Existence of embeddings of smooth varieties into linear algebraic groups

We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2023-01, Vol.32 (4), p.729-786
Hauptverfasser: Feller, Peter, van Santen, Immanuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 4
container_start_page 729
container_title Journal of algebraic geometry
container_volume 32
creator Feller, Peter
van Santen, Immanuel
description We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to 2 d + 1 2d+1 . In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.
doi_str_mv 10.1090/jag/793
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jag_793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jag_793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-2c17415e9ed57a2be34f09fbe748f2b743a57363f213f3dc475f98c3f0e448ce3</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoM4cG7iX8jNU12SL2mao4zphIEXPZc0_VIz2mYkVfTf2-FO7_teHl4eQu45e-TMsM3Rdhtt4IosuQJZaFmV13NnqizAcH5DbnM-MiY4V3JJ9rufkCccHdLoKQ4Ntm0Yu3xeeYhx-qTfNgWcAmYaxinSPoxoE7V9h02ywdEuxa9TXpOFt33Gu0uuyMfz7n27Lw5vL6_bp0PhhKqmQjiuJVdosFXaigZBemZ8g_NPLxotwSoNJXjBwUPrpFbeVA48Qykrh7AiD_9cl2LOCX19SmGw6bfmrD4LqGcB9SwA_gCzWk6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of embeddings of smooth varieties into linear algebraic groups</title><source>American Mathematical Society Publications</source><creator>Feller, Peter ; van Santen, Immanuel</creator><creatorcontrib>Feller, Peter ; van Santen, Immanuel</creatorcontrib><description>We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to 2 d + 1 2d+1 . In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.</description><identifier>ISSN: 1056-3911</identifier><identifier>EISSN: 1534-7486</identifier><identifier>DOI: 10.1090/jag/793</identifier><language>eng</language><ispartof>Journal of algebraic geometry, 2023-01, Vol.32 (4), p.729-786</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-2c17415e9ed57a2be34f09fbe748f2b743a57363f213f3dc475f98c3f0e448ce3</citedby><cites>FETCH-LOGICAL-c258t-2c17415e9ed57a2be34f09fbe748f2b743a57363f213f3dc475f98c3f0e448ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Feller, Peter</creatorcontrib><creatorcontrib>van Santen, Immanuel</creatorcontrib><title>Existence of embeddings of smooth varieties into linear algebraic groups</title><title>Journal of algebraic geometry</title><description>We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to 2 d + 1 2d+1 . In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.</description><issn>1056-3911</issn><issn>1534-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoM4cG7iX8jNU12SL2mao4zphIEXPZc0_VIz2mYkVfTf2-FO7_teHl4eQu45e-TMsM3Rdhtt4IosuQJZaFmV13NnqizAcH5DbnM-MiY4V3JJ9rufkCccHdLoKQ4Ntm0Yu3xeeYhx-qTfNgWcAmYaxinSPoxoE7V9h02ywdEuxa9TXpOFt33Gu0uuyMfz7n27Lw5vL6_bp0PhhKqmQjiuJVdosFXaigZBemZ8g_NPLxotwSoNJXjBwUPrpFbeVA48Qykrh7AiD_9cl2LOCX19SmGw6bfmrD4LqGcB9SwA_gCzWk6-</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Feller, Peter</creator><creator>van Santen, Immanuel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>Existence of embeddings of smooth varieties into linear algebraic groups</title><author>Feller, Peter ; van Santen, Immanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-2c17415e9ed57a2be34f09fbe748f2b743a57363f213f3dc475f98c3f0e448ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feller, Peter</creatorcontrib><creatorcontrib>van Santen, Immanuel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feller, Peter</au><au>van Santen, Immanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of embeddings of smooth varieties into linear algebraic groups</atitle><jtitle>Journal of algebraic geometry</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>729</spage><epage>786</epage><pages>729-786</pages><issn>1056-3911</issn><eissn>1534-7486</eissn><abstract>We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to 2 d + 1 2d+1 . In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.</abstract><doi>10.1090/jag/793</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1056-3911
ispartof Journal of algebraic geometry, 2023-01, Vol.32 (4), p.729-786
issn 1056-3911
1534-7486
language eng
recordid cdi_crossref_primary_10_1090_jag_793
source American Mathematical Society Publications
title Existence of embeddings of smooth varieties into linear algebraic groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20embeddings%20of%20smooth%20varieties%20into%20linear%20algebraic%20groups&rft.jtitle=Journal%20of%20algebraic%20geometry&rft.au=Feller,%20Peter&rft.date=2023-01-01&rft.volume=32&rft.issue=4&rft.spage=729&rft.epage=786&rft.pages=729-786&rft.issn=1056-3911&rft.eissn=1534-7486&rft_id=info:doi/10.1090/jag/793&rft_dat=%3Ccrossref%3E10_1090_jag_793%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true