Existence of embeddings of smooth varieties into linear algebraic groups

We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2023-01, Vol.32 (4), p.729-786
Hauptverfasser: Feller, Peter, van Santen, Immanuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every smooth affine variety of dimension d d embeds into every simple algebraic group of dimension at least 2 d + 2 2d+2 . We do this by establishing the existence of embeddings of smooth affine varieties into the total space of certain principal bundles. For the latter we employ and build upon parametric transversality results for flexible affine varieties due to Kaliman. By adapting a Chow-group-based argument due to Bloch, Murthy, and Szpiro, we show that our result is optimal up to a possible improvement of the bound to 2 d + 1 2d+1 . In order to study the limits of our embedding method, we use rational homology group calculations of homogeneous spaces and we establish a domination result for rational homology of complex smooth varieties.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/793