Codimension two integral points on some rationally connected threefolds are potentially dense

Let X X be a smooth, projective, rationally connected variety, defined over a number field k k , and let Z ⊂ X Z\subset X be a closed subset of codimension at least two. In this paper, for certain choices of X X , we prove that the set of Z Z -integral points is potentially Zariski dense, in the sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2022-04, Vol.31 (2), p.345-386
Hauptverfasser: McKinnon, David, Roth, Mike
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X X be a smooth, projective, rationally connected variety, defined over a number field k k , and let Z ⊂ X Z\subset X be a closed subset of codimension at least two. In this paper, for certain choices of X X , we prove that the set of Z Z -integral points is potentially Zariski dense, in the sense that there is a finite extension K K of k k such that the set of points P ∈ X ( K ) P\in X(K) that are Z Z -integral is Zariski dense in X X . This gives a positive answer to a question of Hassett and Tschinkel from 2001.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/782