Equivariant connective -theory
For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective K K -theory mapping to the equivariant K K -homology of Guillot and the equivariant algebraic K K -theory of Thomason. It has all the standard...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2022-01, Vol.31 (1), p.181-204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective
K
K
-theory mapping to the equivariant
K
K
-homology of Guillot and the equivariant algebraic
K
K
-theory of Thomason. It has all the standard basic properties as the homotopy invariance and localization. We also get the equivariant version of the Brown-Gersten-Quillen spectral sequence and study its convergence. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/773 |