Equivariant connective -theory

For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective K K -theory mapping to the equivariant K K -homology of Guillot and the equivariant algebraic K K -theory of Thomason. It has all the standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2022-01, Vol.31 (1), p.181-204
Hauptverfasser: Karpenko, Nikita, Merkurjev, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For separated schemes of finite type over a field with an action of an affine group scheme of finite type, we construct the bi-graded equivariant connective K K -theory mapping to the equivariant K K -homology of Guillot and the equivariant algebraic K K -theory of Thomason. It has all the standard basic properties as the homotopy invariance and localization. We also get the equivariant version of the Brown-Gersten-Quillen spectral sequence and study its convergence.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/773