Explicit resolution of weak wild quotient singularities on arithmetic surfaces

A weak wild arithmetic quotient singularity arises from the quotient of a smooth arithmetic surface by a finite group action, where the inertia group of a point on a closed characteristic p p fiber is a p p -group acting with smallest possible ramification jump. In this paper, we give complete expli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2020-10, Vol.29 (4), p.691-728
Hauptverfasser: Obus, Andrew, Wewers, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A weak wild arithmetic quotient singularity arises from the quotient of a smooth arithmetic surface by a finite group action, where the inertia group of a point on a closed characteristic p p fiber is a p p -group acting with smallest possible ramification jump. In this paper, we give complete explicit resolutions of these singularities using deformation theory and valuation theory, taking a more local perspective than previous work has taken. Our descriptions answer several questions of Lorenzini. Along the way, we give a valuation-theoretic criterion for a normal snc-model of P 1 \mathbb {P}^1 over a discretely valued field to be regular.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/745