Vafa-Witten invariants for projective surfaces I: stable case
On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a C ∗ \mathbb {C}^* action with compact fixed locus. Applying virtual localisation we def...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2020-10, Vol.29 (4), p.603-668 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a
C
∗
\mathbb {C}^*
action with compact fixed locus. Applying
virtual localisation
we define invariants constant under deformations.
When the vanishing theorem of Vafa-Witten holds, the result is the (signed) Euler characteristic of the moduli space of instantons. In general there are other,
rational
, contributions. Calculations of these on surfaces with positive canonical bundle recover the first terms of modular forms predicted by Vafa and Witten. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/738 |