Vafa-Witten invariants for projective surfaces I: stable case

On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a C ∗ \mathbb {C}^* action with compact fixed locus. Applying virtual localisation we def...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2020-10, Vol.29 (4), p.603-668
Hauptverfasser: Tanaka, Yuuji, Thomas, Richard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On a polarised surface, solutions of the Vafa-Witten equations correspond to certain polystable Higgs pairs. When stability and semistability coincide, the moduli space admits a symmetric obstruction theory and a C ∗ \mathbb {C}^* action with compact fixed locus. Applying virtual localisation we define invariants constant under deformations. When the vanishing theorem of Vafa-Witten holds, the result is the (signed) Euler characteristic of the moduli space of instantons. In general there are other, rational , contributions. Calculations of these on surfaces with positive canonical bundle recover the first terms of modular forms predicted by Vafa and Witten.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/738