Uniqueness of embeddings of the affine line into algebraic groups

Let Y Y be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line C \mathbb {C} into Y Y are the same up to an automorphism of Y Y provided that Y Y is not isomorphic to a product of a torus ( C ∗ ) k (\mathbb {C}^\ast )^k and one of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2019-01, Vol.28 (4), p.649-698
Hauptverfasser: Feller, Peter, van Santen, Immanuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y Y be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line C \mathbb {C} into Y Y are the same up to an automorphism of Y Y provided that Y Y is not isomorphic to a product of a torus ( C ∗ ) k (\mathbb {C}^\ast )^k and one of the three varieties C 3 \mathbb {C}^3 , SL 2 \operatorname {SL}_2 , and  PSL 2 \operatorname {PSL}_2 .
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/725