Uniqueness of embeddings of the affine line into algebraic groups
Let Y Y be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line C \mathbb {C} into Y Y are the same up to an automorphism of Y Y provided that Y Y is not isomorphic to a product of a torus ( C ∗ ) k (\mathbb {C}^\ast )^k and one of the...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2019-01, Vol.28 (4), p.649-698 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
Y
Y
be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line
C
\mathbb {C}
into
Y
Y
are the same up to an automorphism of
Y
Y
provided that
Y
Y
is not isomorphic to a product of a torus
(
C
∗
)
k
(\mathbb {C}^\ast )^k
and one of the three varieties
C
3
\mathbb {C}^3
,
SL
2
\operatorname {SL}_2
, and
PSL
2
\operatorname {PSL}_2
. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/725 |