On the irreducible spin representations of symmetric and alternating groups which remain irreducible in characteristic  3

For any finite group G and any prime p one can ask which ordinary irreducible representations remain irreducible in characteristic p, or more generally, which representations remain homogeneous in characteristic p. In this paper we address this question when G is a proper double cover of the symmetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Representation theory 2023-09, Vol.27 (22), p.778-814
Hauptverfasser: Fayers, Matthew, Morotti, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any finite group G and any prime p one can ask which ordinary irreducible representations remain irreducible in characteristic p, or more generally, which representations remain homogeneous in characteristic p. In this paper we address this question when G is a proper double cover of the symmetric or alternating group. We obtain a classification when p=3 except in the case of a certain family of partitions relating to spin RoCK blocks. Our techniques involve induction and restriction, degree calculations, decomposing projective characters and recent results of Kleshchev and Livesey on spin RoCK blocks.
ISSN:1088-4165
1088-4165
DOI:10.1090/ert/654