Reflexivity of Newton--Okounkov bodies of partial flag varieties
Assume that the valuation semigroup \Gamma (\lambda ) of an arbitrary partial flag variety corresponding to the line bundle \mathcal {L_\lambda } constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton–Okounkov body — which...
Gespeichert in:
Veröffentlicht in: | Representation theory 2022-08, Vol.26 (28), p.859-873 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that the valuation semigroup \Gamma (\lambda ) of an arbitrary partial flag variety corresponding to the line bundle \mathcal {L_\lambda } constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton–Okounkov body — which happens to be a rational, convex polytope — contains exactly one lattice point in its interior if and only if \mathcal {L}_\lambda is the anticanonical line bundle. Furthermore, we use this unique lattice point to construct the dual polytope of the Newton–Okounkov body and prove that this dual is a lattice polytope using a result by Hibi. This leads to an unexpected, necessary and sufficient condition for the Newton–Okounkov body to be reflexive. |
---|---|
ISSN: | 1088-4165 1088-4165 |
DOI: | 10.1090/ert/621 |