Reflexivity of Newton--Okounkov bodies of partial flag varieties

Assume that the valuation semigroup \Gamma (\lambda ) of an arbitrary partial flag variety corresponding to the line bundle \mathcal {L_\lambda } constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton–Okounkov body — which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Representation theory 2022-08, Vol.26 (28), p.859-873
1. Verfasser: Steinert, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume that the valuation semigroup \Gamma (\lambda ) of an arbitrary partial flag variety corresponding to the line bundle \mathcal {L_\lambda } constructed via a full-rank valuation is finitely generated and saturated. We use Ehrhart theory to prove that the associated Newton–Okounkov body — which happens to be a rational, convex polytope — contains exactly one lattice point in its interior if and only if \mathcal {L}_\lambda is the anticanonical line bundle. Furthermore, we use this unique lattice point to construct the dual polytope of the Newton–Okounkov body and prove that this dual is a lattice polytope using a result by Hibi. This leads to an unexpected, necessary and sufficient condition for the Newton–Okounkov body to be reflexive.
ISSN:1088-4165
1088-4165
DOI:10.1090/ert/621