Calculus of archimedean Rankin--Selberg integrals with recurrence relations
Let n and n’ be positive integers such that n-n’\in \{0,1\}. Let F be either \mathbb {R} or \mathbb {C}. Let K_n and K_{n’} be maximal compact subgroups of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal...
Gespeichert in:
Veröffentlicht in: | Representation theory 2022-07, Vol.26 (25), p.714-763 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n and n’ be positive integers such that n-n’\in \{0,1\}. Let F be either \mathbb {R} or \mathbb {C}. Let K_n and K_{n’} be maximal compact subgroups of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal K_n- and K_{n’}-types for pairs of principal series representations of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), using their recurrence relations. Our results for F=\mathbb {C} can be applied to the arithmetic study of critical values of automorphic L-functions. |
---|---|
ISSN: | 1088-4165 1088-4165 |
DOI: | 10.1090/ert/618 |