Calculus of archimedean Rankin--Selberg integrals with recurrence relations

Let n and n’ be positive integers such that n-n’\in \{0,1\}. Let F be either \mathbb {R} or \mathbb {C}. Let K_n and K_{n’} be maximal compact subgroups of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Representation theory 2022-07, Vol.26 (25), p.714-763
Hauptverfasser: Ishii, Taku, Miyazaki, Tadashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n and n’ be positive integers such that n-n’\in \{0,1\}. Let F be either \mathbb {R} or \mathbb {C}. Let K_n and K_{n’} be maximal compact subgroups of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal K_n- and K_{n’}-types for pairs of principal series representations of \mathrm {GL}(n,F) and \mathrm {GL}(n’,F), using their recurrence relations. Our results for F=\mathbb {C} can be applied to the arithmetic study of critical values of automorphic L-functions.
ISSN:1088-4165
1088-4165
DOI:10.1090/ert/618