Integral binary Hamiltonian forms and their waterworlds
We give a graphical theory of integral indefinite binary Hamiltonian forms f analogous to the one of Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order \mathscr {O} in a definite quaternion algebra over \mathbb {Q}, we define the waterwo...
Gespeichert in:
Veröffentlicht in: | Conformal geometry and dynamics 2021-10, Vol.25 (7), p.126-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a graphical theory of integral indefinite binary Hamiltonian forms f analogous to the one of Conway for binary quadratic forms and the one of Bestvina-Savin for binary Hermitian forms. Given a maximal order \mathscr {O} in a definite quaternion algebra over \mathbb {Q}, we define the waterworld of f, analogous to Conway’s river and Bestvina-Savin’s ocean , and use it to give a combinatorial description of the values of f on \mathscr {O}\times \mathscr {O}. We use an appropriate normalisation of Busemann distances to the cusps (with an algebraic description given in an independent appendix), the \operatorname {SL}_{2}(\mathscr {O})-equivariant Ford-Voronoi cellulation of the real hyperbolic 5-space, and the conformal action of \operatorname {SL}_{2}(\mathscr {O}) on the Hamilton quaternions. |
---|---|
ISSN: | 1088-4173 1088-4173 |
DOI: | 10.1090/ecgd/362 |