Asymptotic vanishing of syzygies of algebraic varieties

The purpose of this paper is to prove Ein–Lazarsfeld’s conjecture on asymptotic vanishing of syzygies of algebraic varieties. This result, together with Ein–Lazarsfeld’s asymptotic nonvanishing theorem, describes the overall picture of asymptotic behaviors of the minimal free resolutions of the grad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the American Mathematical Society 2022-06, Vol.2 (3), p.133-148
1. Verfasser: Park, Jinhyung
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to prove Ein–Lazarsfeld’s conjecture on asymptotic vanishing of syzygies of algebraic varieties. This result, together with Ein–Lazarsfeld’s asymptotic nonvanishing theorem, describes the overall picture of asymptotic behaviors of the minimal free resolutions of the graded section rings of line bundles on a projective variety as the positivity of the line bundles grows. Previously, Raicu reduced the problem to the case of products of three projective spaces, and we resolve this case here.
ISSN:2692-3688
2692-3688
DOI:10.1090/cams/7