Injectivity theorem for pseudo-effective line bundles and its applications
We formulate and establish a generalization of Kollár’s injectivity theorem for adjoint bundles twisted by suitable multiplier ideal sheaves. As applications, we generalize Kollár’s torsion-freeness, Kollár’s vanishing theorem, and a generic vanishing theorem for pseudo-effective line bundles. Our a...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society. Series B 2021-10, Vol.8 (27), p.849-884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate and establish a generalization of Kollár’s injectivity theorem for adjoint bundles twisted by suitable multiplier ideal sheaves. As applications, we generalize Kollár’s torsion-freeness, Kollár’s vanishing theorem, and a generic vanishing theorem for pseudo-effective line bundles. Our approach is not Hodge theoretic but analytic, which enables us to treat singular Hermitian metrics with nonalgebraic singularities. For the proof of the main injectivity theorem, we use L^{2}-harmonic forms on noncompact Kähler manifolds. For applications, we prove a Bertini-type theorem on the restriction of multiplier ideal sheaves to general members of free linear systems. |
---|---|
ISSN: | 2330-0000 2330-0000 |
DOI: | 10.1090/btran/86 |