On finite non-degenerate braided tensor categories with a Lagrangian subcategory
Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate br...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society. Series B 2022-05, Vol.9 (15), p.450-469 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 15 |
container_start_page | 450 |
container_title | Transactions of the American Mathematical Society. Series B |
container_volume | 9 |
creator | Gelaki, Shlomo Sebbag, Daniel |
description | Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral. |
doi_str_mv | 10.1090/btran/78 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_btran_78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_78</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGrBnxDw4mVtPjfJUYpaoVAPel7yMVkjNivJivTfu9oevDiXeWfm4R14Ebqk5IYSQ5ZuLDYvlT5BM8Y5achUp3_0OVrU-jYJSplUUs_Q0zbjmHIaAechNwF6yFDsNLpiU4CAR8h1KNhPu34oCSr-SuMrtnhj--lbn2zG9dMd7_sLdBbte4XFsc_Ry_3d82rdbLYPj6vbTWMZEbrhQXqiaKtd1FS5wFovJG-BR2GFdqb1hgTDmA4gpBHBQ2t5VNoTY6RyjM_R9cHXl6HWArH7KGlny76jpPsJo_sNo1N6Qq8OqN3V_6lvC9BeoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><source>DOAJ Directory of Open Access Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gelaki, Shlomo ; Sebbag, Daniel</creator><creatorcontrib>Gelaki, Shlomo ; Sebbag, Daniel</creatorcontrib><description>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</description><identifier>ISSN: 2330-0000</identifier><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/78</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society. Series B, 2022-05, Vol.9 (15), p.450-469</ispartof><rights>Copyright 2022, by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</citedby><cites>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/btran/2022-09-15/S2330-0000-2022-00078-9/S2330-0000-2022-00078-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/btran/2022-09-15/S2330-0000-2022-00078-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,864,23324,27924,27925,77838,77848</link.rule.ids></links><search><creatorcontrib>Gelaki, Shlomo</creatorcontrib><creatorcontrib>Sebbag, Daniel</creatorcontrib><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><title>Transactions of the American Mathematical Society. Series B</title><description>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</description><issn>2330-0000</issn><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGrBnxDw4mVtPjfJUYpaoVAPel7yMVkjNivJivTfu9oevDiXeWfm4R14Ebqk5IYSQ5ZuLDYvlT5BM8Y5achUp3_0OVrU-jYJSplUUs_Q0zbjmHIaAechNwF6yFDsNLpiU4CAR8h1KNhPu34oCSr-SuMrtnhj--lbn2zG9dMd7_sLdBbte4XFsc_Ry_3d82rdbLYPj6vbTWMZEbrhQXqiaKtd1FS5wFovJG-BR2GFdqb1hgTDmA4gpBHBQ2t5VNoTY6RyjM_R9cHXl6HWArH7KGlny76jpPsJo_sNo1N6Qq8OqN3V_6lvC9BeoA</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>Gelaki, Shlomo</creator><creator>Sebbag, Daniel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220527</creationdate><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><author>Gelaki, Shlomo ; Sebbag, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelaki, Shlomo</creatorcontrib><creatorcontrib>Sebbag, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelaki, Shlomo</au><au>Sebbag, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><date>2022-05-27</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>450</spage><epage>469</epage><pages>450-469</pages><issn>2330-0000</issn><eissn>2330-0000</eissn><abstract>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</abstract><doi>10.1090/btran/78</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-0000 |
ispartof | Transactions of the American Mathematical Society. Series B, 2022-05, Vol.9 (15), p.450-469 |
issn | 2330-0000 2330-0000 |
language | eng |
recordid | cdi_crossref_primary_10_1090_btran_78 |
source | DOAJ Directory of Open Access Journals; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals |
title | On finite non-degenerate braided tensor categories with a Lagrangian subcategory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20finite%20non-degenerate%20braided%20tensor%20categories%20with%20a%20Lagrangian%20subcategory&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Gelaki,%20Shlomo&rft.date=2022-05-27&rft.volume=9&rft.issue=15&rft.spage=450&rft.epage=469&rft.pages=450-469&rft.issn=2330-0000&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/78&rft_dat=%3Cams_cross%3E10_1090_btran_78%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |