On finite non-degenerate braided tensor categories with a Lagrangian subcategory

Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2022-05, Vol.9 (15), p.450-469
Hauptverfasser: Gelaki, Shlomo, Sebbag, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 15
container_start_page 450
container_title Transactions of the American Mathematical Society. Series B
container_volume 9
creator Gelaki, Shlomo
Sebbag, Daniel
description Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.
doi_str_mv 10.1090/btran/78
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_btran_78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_78</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGrBnxDw4mVtPjfJUYpaoVAPel7yMVkjNivJivTfu9oevDiXeWfm4R14Ebqk5IYSQ5ZuLDYvlT5BM8Y5achUp3_0OVrU-jYJSplUUs_Q0zbjmHIaAechNwF6yFDsNLpiU4CAR8h1KNhPu34oCSr-SuMrtnhj--lbn2zG9dMd7_sLdBbte4XFsc_Ry_3d82rdbLYPj6vbTWMZEbrhQXqiaKtd1FS5wFovJG-BR2GFdqb1hgTDmA4gpBHBQ2t5VNoTY6RyjM_R9cHXl6HWArH7KGlny76jpPsJo_sNo1N6Qq8OqN3V_6lvC9BeoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><source>DOAJ Directory of Open Access Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gelaki, Shlomo ; Sebbag, Daniel</creator><creatorcontrib>Gelaki, Shlomo ; Sebbag, Daniel</creatorcontrib><description>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</description><identifier>ISSN: 2330-0000</identifier><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/78</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society. Series B, 2022-05, Vol.9 (15), p.450-469</ispartof><rights>Copyright 2022, by the authors under Creative Commons Attribution-NonCommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</citedby><cites>FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/btran/2022-09-15/S2330-0000-2022-00078-9/S2330-0000-2022-00078-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/btran/2022-09-15/S2330-0000-2022-00078-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,864,23324,27924,27925,77838,77848</link.rule.ids></links><search><creatorcontrib>Gelaki, Shlomo</creatorcontrib><creatorcontrib>Sebbag, Daniel</creatorcontrib><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><title>Transactions of the American Mathematical Society. Series B</title><description>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</description><issn>2330-0000</issn><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGrBnxDw4mVtPjfJUYpaoVAPel7yMVkjNivJivTfu9oevDiXeWfm4R14Ebqk5IYSQ5ZuLDYvlT5BM8Y5achUp3_0OVrU-jYJSplUUs_Q0zbjmHIaAechNwF6yFDsNLpiU4CAR8h1KNhPu34oCSr-SuMrtnhj--lbn2zG9dMd7_sLdBbte4XFsc_Ry_3d82rdbLYPj6vbTWMZEbrhQXqiaKtd1FS5wFovJG-BR2GFdqb1hgTDmA4gpBHBQ2t5VNoTY6RyjM_R9cHXl6HWArH7KGlny76jpPsJo_sNo1N6Qq8OqN3V_6lvC9BeoA</recordid><startdate>20220527</startdate><enddate>20220527</enddate><creator>Gelaki, Shlomo</creator><creator>Sebbag, Daniel</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220527</creationdate><title>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</title><author>Gelaki, Shlomo ; Sebbag, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2048-3d5c07168bf817bd26c4536e3f4a48b96c90d9228de4594dce6a3f78c09957b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelaki, Shlomo</creatorcontrib><creatorcontrib>Sebbag, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelaki, Shlomo</au><au>Sebbag, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On finite non-degenerate braided tensor categories with a Lagrangian subcategory</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><date>2022-05-27</date><risdate>2022</risdate><volume>9</volume><issue>15</issue><spage>450</spage><epage>469</epage><pages>450-469</pages><issn>2330-0000</issn><eissn>2330-0000</eissn><abstract>Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.</abstract><doi>10.1090/btran/78</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-0000
ispartof Transactions of the American Mathematical Society. Series B, 2022-05, Vol.9 (15), p.450-469
issn 2330-0000
2330-0000
language eng
recordid cdi_crossref_primary_10_1090_btran_78
source DOAJ Directory of Open Access Journals; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals
title On finite non-degenerate braided tensor categories with a Lagrangian subcategory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20finite%20non-degenerate%20braided%20tensor%20categories%20with%20a%20Lagrangian%20subcategory&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Gelaki,%20Shlomo&rft.date=2022-05-27&rft.volume=9&rft.issue=15&rft.spage=450&rft.epage=469&rft.pages=450-469&rft.issn=2330-0000&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/78&rft_dat=%3Cams_cross%3E10_1090_btran_78%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true