On finite non-degenerate braided tensor categories with a Lagrangian subcategory

Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2022-05, Vol.9 (15), p.450-469
Hauptverfasser: Gelaki, Shlomo, Sebbag, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let W be a finite dimensional vector space over \mathbb {C} viewed as a purely odd supervector space, and let sRep(W) be the finite symmetric tensor category of finite dimensional superrepresentations of the finite supergroup W. We show that the set of equivalence classes of finite non-degenerate braided tensor categories \mathcal {C} containing sRep(W) as a Lagrangian subcategory is a torsor over the cyclic group \mathbb {Z}/16\mathbb {Z}. In particular, we obtain that there are 8 non-equivalent such braided tensor categories \mathcal {C} which are integral and 8 which are non-integral.
ISSN:2330-0000
2330-0000
DOI:10.1090/btran/78