Shortening binary complexes and commutativity of K-theory with infinite products

We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2020-03, Vol.7 (1), p.1-23
Hauptverfasser: Kasprowski, Daniel, Winges, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 1
container_title Transactions of the American Mathematical Society. Series B
container_volume 7
creator Kasprowski, Daniel
Winges, Christoph
description We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products.
doi_str_mv 10.1090/btran/43
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_btran_43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_43</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2043-fb0cc98301082e10df02819bde6d02051eee0c2b6e0599c7f7e86baed9b81c783</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWGrBjxDw4mXtS7J_skcpasWCgnpekuyLG-lmS5Kq_fZurQcvzuXNwI_HMIScM7hiUMNcp6D8PBdHZMKFgAxGHf_xp2QW4_toGONFVcgJeXruhpDQO_9GtfMq7KgZ-s0avzBS5dt96rdJJffh0o4Olj5kqcNh5D5d6qjz1nmXkG7C0G5NimfkxKp1xNnvnZLX25uXxTJbPd7dL65XmeKQi8xqMKaWAhhIjgxaC1yyWrdYtsChYIgIhusSoahrU9kKZakVtrWWzFRSTMnl4a8JQ4wBbbMJrh_7Nwya_RjNzxhNLkb04oCqPv5PfQPgz1_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shortening binary complexes and commutativity of K-theory with infinite products</title><source>DOAJ Directory of Open Access Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kasprowski, Daniel ; Winges, Christoph</creator><creatorcontrib>Kasprowski, Daniel ; Winges, Christoph</creatorcontrib><description>We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products.</description><identifier>ISSN: 2330-0000</identifier><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/43</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society. Series B, 2020-03, Vol.7 (1), p.1-23</ispartof><rights>Copyright 2020, by the author under Creative Commons Attribution 3.0 License (CC BY 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2043-fb0cc98301082e10df02819bde6d02051eee0c2b6e0599c7f7e86baed9b81c783</citedby><cites>FETCH-LOGICAL-a2043-fb0cc98301082e10df02819bde6d02051eee0c2b6e0599c7f7e86baed9b81c783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/btran/2020-07-01/S2330-0000-2020-00043-0/S2330-0000-2020-00043-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/btran/2020-07-01/S2330-0000-2020-00043-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,864,23324,27924,27925,77838,77848</link.rule.ids></links><search><creatorcontrib>Kasprowski, Daniel</creatorcontrib><creatorcontrib>Winges, Christoph</creatorcontrib><title>Shortening binary complexes and commutativity of K-theory with infinite products</title><title>Transactions of the American Mathematical Society. Series B</title><description>We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products.</description><issn>2330-0000</issn><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWGrBjxDw4mXtS7J_skcpasWCgnpekuyLG-lmS5Kq_fZurQcvzuXNwI_HMIScM7hiUMNcp6D8PBdHZMKFgAxGHf_xp2QW4_toGONFVcgJeXruhpDQO_9GtfMq7KgZ-s0avzBS5dt96rdJJffh0o4Olj5kqcNh5D5d6qjz1nmXkG7C0G5NimfkxKp1xNnvnZLX25uXxTJbPd7dL65XmeKQi8xqMKaWAhhIjgxaC1yyWrdYtsChYIgIhusSoahrU9kKZakVtrWWzFRSTMnl4a8JQ4wBbbMJrh_7Nwya_RjNzxhNLkb04oCqPv5PfQPgz1_K</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Kasprowski, Daniel</creator><creator>Winges, Christoph</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200325</creationdate><title>Shortening binary complexes and commutativity of K-theory with infinite products</title><author>Kasprowski, Daniel ; Winges, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2043-fb0cc98301082e10df02819bde6d02051eee0c2b6e0599c7f7e86baed9b81c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasprowski, Daniel</creatorcontrib><creatorcontrib>Winges, Christoph</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasprowski, Daniel</au><au>Winges, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortening binary complexes and commutativity of K-theory with infinite products</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>2330-0000</issn><eissn>2330-0000</eissn><abstract>We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products.</abstract><doi>10.1090/btran/43</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-0000
ispartof Transactions of the American Mathematical Society. Series B, 2020-03, Vol.7 (1), p.1-23
issn 2330-0000
2330-0000
language eng
recordid cdi_crossref_primary_10_1090_btran_43
source DOAJ Directory of Open Access Journals; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Shortening binary complexes and commutativity of K-theory with infinite products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortening%20binary%20complexes%20and%20commutativity%20of%20K-theory%20with%20infinite%20products&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Kasprowski,%20Daniel&rft.date=2020-03-25&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=2330-0000&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/43&rft_dat=%3Cams_cross%3E10_1090_btran_43%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true