Shortening binary complexes and commutativity of K-theory with infinite products
We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follo...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society. Series B 2020-03, Vol.7 (1), p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products. |
---|---|
ISSN: | 2330-0000 2330-0000 |
DOI: | 10.1090/btran/43 |