Shortening binary complexes and commutativity of K-theory with infinite products

We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2020-03, Vol.7 (1), p.1-23
Hauptverfasser: Kasprowski, Daniel, Winges, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that in Grayson's model of higher algebraic K-theory using binary acyclic complexes, the complexes of length two suffice to generate the whole group. Moreover, we prove that the comparison map from Nenashev's model for K_1 to Grayson's model for K_1 is an isomorphism. It follows that algebraic K-theory of exact categories commutes with infinite products.
ISSN:2330-0000
2330-0000
DOI:10.1090/btran/43