Rational curves on del Pezzo surfaces in positive characteristic

We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2023-03, Vol.10 (14), p.407-451
Hauptverfasser: Beheshti, Roya, Lehmann, Brian, Riedl, Eric, Tanimoto, Sho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also investigate the principles of Geometric Manin’s Conjecture for weak del Pezzo surfaces. In the course of this investigation, we give examples of weak del Pezzo surfaces defined over \mathbb F_2(t) or \mathbb {F}_{3}(t) such that the exceptional sets in Manin’s Conjecture are Zariski dense.
ISSN:2330-0000
2330-0000
DOI:10.1090/btran/138