Most binary forms come from a pencil of quadrics
A pair of symmetric bilinear forms A and B determine a binary form f(x,y) := \operatorname {disc}(Ax-By). We prove that the question of whether a given binary form can be written in this way as a discriminant form generically satisfies a local-global principle and deduce from this that most binary f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society. Series B 2016-12, Vol.3 (3), p.18-27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pair of symmetric bilinear forms A and B determine a binary form f(x,y) := \operatorname {disc}(Ax-By). We prove that the question of whether a given binary form can be written in this way as a discriminant form generically satisfies a local-global principle and deduce from this that most binary forms over \mathbb{Q} are discriminant forms. This is related to the arithmetic of the hyperelliptic curve z^2 = f(x,y). Analogous results for nonhyperelliptic curves are also given. |
---|---|
ISSN: | 2330-1511 2330-1511 |
DOI: | 10.1090/bproc/24 |