Most binary forms come from a pencil of quadrics

A pair of symmetric bilinear forms A and B determine a binary form f(x,y) := \operatorname {disc}(Ax-By). We prove that the question of whether a given binary form can be written in this way as a discriminant form generically satisfies a local-global principle and deduce from this that most binary f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society. Series B 2016-12, Vol.3 (3), p.18-27
1. Verfasser: Creutz, Brendan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A pair of symmetric bilinear forms A and B determine a binary form f(x,y) := \operatorname {disc}(Ax-By). We prove that the question of whether a given binary form can be written in this way as a discriminant form generically satisfies a local-global principle and deduce from this that most binary forms over \mathbb{Q} are discriminant forms. This is related to the arithmetic of the hyperelliptic curve z^2 = f(x,y). Analogous results for nonhyperelliptic curves are also given.
ISSN:2330-1511
2330-1511
DOI:10.1090/bproc/24