Transchromatic extensions in motivic bordism
We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MU_{\mathbb{R}}. These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic heigh...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society. Series B 2023-03, Vol.10 (7), p.76-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MU_{\mathbb{R}}. These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the \pi _{(\ast ,\ast )}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the \pi _{\star }MU_\mathbb{R}-module structure on the Real Morava K-theories. |
---|---|
ISSN: | 2330-1511 2330-1511 |
DOI: | 10.1090/bproc/108 |