Transchromatic extensions in motivic bordism

We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MU_{\mathbb{R}}. These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic heigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society. Series B 2023-03, Vol.10 (7), p.76-90
Hauptverfasser: Beaudry, Agnès, Hill, Michael A., Shi, XiaoLin Danny, Zeng, Mingcong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show a number of Toda brackets in the homotopy of the motivic bordism spectrum MGL and of the Real bordism spectrum MU_{\mathbb{R}}. These brackets are “red-shifting” in the sense that while the terms in the bracket will be of some chromatic height n, the bracket itself will be of chromatic height (n+1). Using these, we deduce a family of exotic multiplications in the \pi _{(\ast ,\ast )}MGL-module structure of the motivic Morava K-theories, including non-trivial multiplications by 2. These in turn imply the analogous family of exotic multiplications in the \pi _{\star }MU_\mathbb{R}-module structure on the Real Morava K-theories.
ISSN:2330-1511
2330-1511
DOI:10.1090/bproc/108