Exceptional surgeries in 3 -manifolds
Myers shows that every compact, connected, orientable 3-manifold with no 2-sphere boundary components contains a hyperbolic knot. We use work of Ikeda with an observation of Adams-Reid to show that every 3-manifold subject to the above conditions contains a hyperbolic knot which admits a non-trivial...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society. Series B 2022-08, Vol.9 (33), p.351-357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myers shows that every compact, connected, orientable 3-manifold with no 2-sphere boundary components contains a hyperbolic knot. We use work of Ikeda with an observation of Adams-Reid to show that every 3-manifold subject to the above conditions contains a hyperbolic knot which admits a non-trivial non-hyperbolic surgery, a toroidal surgery in particular. We conclude with a question and a conjecture about reducible surgeries. |
---|---|
ISSN: | 2330-1511 2330-1511 |
DOI: | 10.1090/bproc/105 |