Papillary Thyroid Carcinoma in Ukraine After Chernobyl and in Japan After Fukushima: Different Histopathological Scenarios
Background: A significant increase in the incidence of papillary thyroid carcinoma (PTC) in subjects exposed to radiation at a young age is a well-documented health consequence of the Chernobyl accident. The ongoing Thyroid Ultrasound Examination (TUE) program in children and adolescents of Fukushim...
Gespeichert in:
Veröffentlicht in: | Thyroid (New York, N.Y.) N.Y.), 2021-09, Vol.31 (9), p.1322-1334 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
A significant increase in the incidence of papillary thyroid carcinoma (PTC) in subjects exposed to radiation at a young age is a well-documented health consequence of the Chernobyl accident. The ongoing Thyroid Ultrasound Examination (TUE) program in children and adolescents of Fukushima Prefecture in Japan also indicated a high prevalence of PTC although its attribution to radiation exposure is a subject of debate. The objective of this study was to perform histopathological analysis of tumor architecture and invasive properties in (i) radiogenic post-Chernobyl and sporadic PTCs from Ukraine, and (ii) PTCs in patients from Fukushima and other Prefectures of Japan of comparable age groups.
Methods:
The Ukrainian radiogenic PTCs included 245 PTCs from patients who resided in three highly
131
I-contaminated regions and 165 sporadic PTCs diagnosed in residents of the same regions who were born after the accident and therefore not exposed to radioiodine. The Japanese series included 115 PTCs detected during the preliminary and the first full-scale surveys of the TUE in Fukushima and 223 PTCs from patients resident in other Prefectures. All of the subjects were included in the main statistical analysis. Three additional analyses were performed limiting the subjects to children, adolescents, and adults.
Results:
Ukrainian radiogenic PTC was characterized by the higher frequency of tumors with a dominant solid-trabecular growth pattern and higher invasiveness, more frequent extrathyroidal extension, lymphatic/vascular invasion, regional and distant metastases when compared with sporadic Ukrainian PTC. The integrative “invasiveness score,” based on five cancer characteristics, was also higher in the radiogenic group. The differences were most pronounced in children. In contrast, no significant differences in tumor morphology or invasiveness were observed between the two Japanese groups or the three age subgroups. The only statistically significant findings were the higher proportion of male patients, smaller mean tumor size, and higher frequency of T1b tumors in the Fukushima group.
Conclusions:
The difference in morphological features that indicate biological behavior of PTC between the radiation-related and sporadic groups from Ukraine, together with the lack of such in the two groups from Japan, strongly suggest a nonradiogenic etiology of PTC from Fukushima and other Prefectures. |
---|---|
ISSN: | 1050-7256 1557-9077 |
DOI: | 10.1089/thy.2020.0308 |