Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli
Broccoli is a food often consumed for its potential health-promoting properties. The health benefits of broccoli are partly associated with secondary plant compounds that have bioactivity; glucosinolates and phenolic acids are two of the most abundant and important in broccoli. In an effort to deter...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal food 2005-06, Vol.8 (2), p.204-214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broccoli is a food often consumed for its potential health-promoting properties. The health benefits of broccoli are partly associated with secondary plant compounds that have bioactivity; glucosinolates and phenolic acids are two of the most abundant and important in broccoli. In an effort to determine how variety, stress, and production conditions affect the production of these bioactive components broccoli was grown in the greenhouse with and without selenium (Se) fertilization, and in the field under conventional or organic farming procedures and with or without water stress. High-performance liquid chromatography/mass spectrometry was used to separate and identify 12 primary phenolic compounds. Variety had a major effect: There was a preponderance of flavonoids in the Majestic variety, but hydroxycinnamic esters were relatively more abundant in the Legacy variety. Organic farming and water stress decreased the overall production of phenolics. Se fertilization increased glucosinolates in general, and sulforaphane in particular, up to a point; above that Se fertilization decreased glucosinolate production. Organic farming and water stress also decreased glucosinolate production. These data show environmental and genetic variation in phenolics and glucosinolates in broccoli, and warn that not all broccoli may contain all health-promoting bioactive components. They further show that selection for one bioactive component (Se) may decrease the content of other bioactive components such as phenolics and glucosinolates. |
---|---|
ISSN: | 1096-620X 1557-7600 |
DOI: | 10.1089/jmf.2005.8.204 |