Gene therapy for B-cell lymphoma in a SCID mouse model using an immunoglobulin-regulated diphtheria toxin gene delivered by a novel adenovirus-polylysine conjugate
Despite advances in conventional therapy, many lives continue to be lost to common forms of B-cell cancers, including leukemias, lymphomas and multiple myeloma. We propose a novel approach to therapy of such cancers using controlled expression of a diphtheria toxin gene (DT-A) to kill malignant cell...
Gespeichert in:
Veröffentlicht in: | Cancer biotherapy 1994, Vol.9 (2), p.131-141 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite advances in conventional therapy, many lives continue to be lost to common forms of B-cell cancers, including leukemias, lymphomas and multiple myeloma. We propose a novel approach to therapy of such cancers using controlled expression of a diphtheria toxin gene (DT-A) to kill malignant cells. We have previously demonstrated selective killing of various cell types, in vitro and in vivo, by cell-specific, transcriptionally controlled expression of this gene. Organ-specific ablation in otherwise healthy transgenic mice has convincingly demonstrated the exquisite specificity achievable by this technique. In the studies now described, DT-A was delivered in vitro and in vivo using a novel gene delivery system employing DNA physically attached to the exterior of adenovirus. After demonstrating the efficacy of gene delivery to Epstein-Barr virus transformed human B-cells in vitro, in vivo work was performed using a SCID mouse model for B-cell lymphoma, in which protection against tumor was observed. The concepts of tissue-regulated toxin gene therapy, and this novel adenovirus gene delivery system are discussed. |
---|---|
ISSN: | 1062-8401 2332-4953 |
DOI: | 10.1089/cbr.1994.9.131 |