Mice with a Mutation in the Thyroid Hormone Receptor β Gene Spontaneously Develop Thyroid Carcinoma: A Mouse Model of Thyroid Carcinogenesis

The molecular genetic basis of thyroid carcinogenesis is not well understood. Most of the existing models of thyroid cancer only rarely show metastases, and this has limited progress in the understanding of the molecular events in thyroid cancer invasion and metastasis. We have recently generated a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thyroid (New York, N.Y.) N.Y.), 2002-11, Vol.12 (11), p.963-969
Hauptverfasser: Suzuki, Hideyo, Willingham, Mark C., Cheng, Sheue-yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular genetic basis of thyroid carcinogenesis is not well understood. Most of the existing models of thyroid cancer only rarely show metastases, and this has limited progress in the understanding of the molecular events in thyroid cancer invasion and metastasis. We have recently generated a mutant mouse by introducing a dominant negative mutant thyroid hormone nuclear receptor gene, TRβPV , into the TRβ gene locus. In this TRβPV mouse, the regulation of the thyroid-pituitary axis is disrupted, leading to a mouse with high levels of circulating thyroid-stimulating hormone and extensive hyperplasia of follicular epithelium within the thyroid. As TRβ PV/PV mice, but not TRβ PV/+ mice, aged, metastatic thyroid carcinoma developed. Histologic evaluation of thyroids of 5-14-month-old mice showed capsular invasion (91%), vascular invasion (74%), anaplasia (35%), and metastasis to the lung and heart (30%). Previous models of thyroid cancer have focused on genes that control initial carcinogenesis, but this model provides an unusual opportunity to study the alterations in gene regulation that occur with clinically relevant changes during progression and metastasis in a predictable fashion.
ISSN:1050-7256
1557-9077
DOI:10.1089/105072502320908295