Solution plasma: new synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2,4,6-trinitrophenol

Herein, we report the synthesis of nitrogen-doped carbon dots (NCDs) through solution plasma (SP) for the first time. The SP method occurs a rapid dissociation of molecules, such as organic compounds, caused by an electrical discharge between electrodes immersed in a solution. The dissociation can r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano express 2020-09, Vol.1 (2), p.20043
Hauptverfasser: Kim, Kyusung, Chokradjaroen, Chayanaphat, Saito, Nagahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we report the synthesis of nitrogen-doped carbon dots (NCDs) through solution plasma (SP) for the first time. The SP method occurs a rapid dissociation of molecules, such as organic compounds, caused by an electrical discharge between electrodes immersed in a solution. The dissociation can result in the creation of various radicals such as ·C 2 , ·CN, and ·H which enable the rapid synthesis of carbon dots (CDs). The unique reaction of radicals allowed the formation of CDs with high N concentration and functionalization of the surface in a short time. In this study, by using the SP method, a very fine NCDs with size of 6 nm were synthesized from a pyridine/water mixture in just 10 min. Bright blue fluorescence (410 nm) with a high quantum yield (61%) was observed due to the high N concentration and the surface passivation. From the potential application point of view, the synthesized NCDs showed an excellent detection property for 2,4,6-trinitrophenol (TNP) by fluorescence quenching effect. It was due to rich amino-functional groups which act as a reaction pathway to TNP. This phenomenon was caused by the synergetic effect of a photo-induced electron transfer with the assistance of proton transfer-assisted electron transfer.
ISSN:2632-959X
2632-959X
DOI:10.1088/2632-959X/abb9fa