Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering
In recent years, advancements in tissue engineering have demonstrated the potential to expedite bone matrix formation, leading to shorter recovery times and decreased clinical challenges compared to conventional methods. Therefore, this study aims to develop composite carbon nanofibers (CNFs) integr...
Gespeichert in:
Veröffentlicht in: | Functional composites and structures 2024-09, Vol.6 (3), p.35002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, advancements in tissue engineering have demonstrated the potential to expedite bone matrix formation, leading to shorter recovery times and decreased clinical challenges compared to conventional methods. Therefore, this study aims to develop composite carbon nanofibers (CNFs) integrated with nano-hydroxyapatite (nHA) particles as scaffolds for bone tissue engineering applications. A key strategy in achieving this objective involves harnessing nanofibrous structures, which offer a high surface area, coupled with nHA particles expected to accelerate bone regeneration and enhance biological activity. To realize this, polyacrylonitrile (PAN)/nHA nanofibers were fabricated using the centrifugal spinning (C-Spin) technique and subsequently carbonized to yield CNF/nHA composite structures. Scanning Electron Microscopy (SEM) confirmed C-Spin as a suitable method for PAN and CNF nanofiber production, with nHA particles uniformly dispersed throughout the nanofibrous structure. Carbonization resulted in reduced fiber diameter due to thermal decomposition and shrinkage of PAN molecules during the process. Furthermore, the incorporation of nHA particles into PAN lowered the stabilization temperature (by 5 °C–20 °C). Tensile tests revealed that PAN samples experienced an approximately 80% increase in ultimate tensile strength and a 187% increase in modulus with a 5 wt.% nHA loading. However, following carbonization, CNF samples exhibited a 50% decrease in strength compared to PAN samples. Additionally, the addition of nHA into CNF improved the graphitic structure. The incorporation of nHA particles into the spinning solution represents a viable strategy for enhancing CNF bioactivity. |
---|---|
ISSN: | 2631-6331 2631-6331 |
DOI: | 10.1088/2631-6331/ad5b49 |