On the use of kolmogorov–arnold networks for adapting wind numerical weather forecasts with explainability and interpretability: application to madeira international airport

This study examines the application of machine learning to enhance wind nowcasting by using a Kolmogorov-Arnold Network model to improve predictions from the Global Forecast System at Madeira International Airport, a site affected by complex terrain. The research addresses the limitations of traditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Research Communications 2024-10, Vol.6 (10), p.105008
Hauptverfasser: Alves, Décio, Mendonça, Fábio, Mostafa, Sheikh Shanawaz, Morgado-Dias, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines the application of machine learning to enhance wind nowcasting by using a Kolmogorov-Arnold Network model to improve predictions from the Global Forecast System at Madeira International Airport, a site affected by complex terrain. The research addresses the limitations of traditional numerical weather prediction models, which often fail to accurately forecast localized wind patterns. Using the Kolmogorov-Arnold Network model led to a substantial reduction in wind speed and direction forecast errors, with a performance that reached a 48.5% improvement to the Global Forecast System 3 h nowcast, considering the mean squared error. A key outcome of this study comes from the model’s ability to generate mathematical formulas that provide insights into the physical and mathematical dynamics influencing local wind patterns and improve the transparency, explainability, and interpretability of the employed machine learning models for atmosphere modeling.
ISSN:2515-7620
2515-7620
DOI:10.1088/2515-7620/ad810f