Filtering variational quantum algorithms for combinatorial optimization
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the filtering variational quantum eigensolver which utilizes filtering operators to achieve fas...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2022-01, Vol.7 (1), p.15021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the filtering variational quantum eigensolver which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the quantum approximate optimization algorithm. We also demonstrate the experimental feasibility of our algorithms on a Quantinuum trapped-ion quantum processor powered by Honeywell. |
---|---|
ISSN: | 2058-9565 2058-9565 |
DOI: | 10.1088/2058-9565/ac3e54 |