Quantum computer-aided design of quantum optics hardware
The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen part...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2021-07, Vol.6 (3), p.35010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35010 |
container_title | Quantum science and technology |
container_volume | 6 |
creator | Kottmann, Jakob S Krenn, Mario Kyaw, Thi Ha Alperin-Lea, Sumner Aspuru-Guzik, Alán |
description | The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design. |
doi_str_mv | 10.1088/2058-9565/abfc94 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_abfc94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstabfc94</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRsNTuXWblytg7z2SWUtQKBRF0PUzmoSkmk84kiP_ehBRxoav74JzD-RC6xHCDoSzXBHiZSy74WlfeSHaCFj-v01_7OVqltAcASjCWIBaofB502w9NZkLTDb2Lua6ts5l1qX5rs-Czw1EQur42KXvX0X7q6C7Qmdcfya2Oc4le7-9eNtt89_TwuLnd5YZy2ueCVbqwlMiKWGKkKEqimceCSF4WrOCCeoF1AYwKBsCBemacJ5Uznls93ksEc66JIaXovOpi3ej4pTCoCV5NdGqiUzP8aLmaLXXo1D4MsR0LqkPqlVBUAeUwWjvrR-H1H8J_c78BeFVnuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum computer-aided design of quantum optics hardware</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</creator><creatorcontrib>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</creatorcontrib><description>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/abfc94</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>photonics ; quantum algorithms ; quantum computing ; quantum optics ; quantum simulation ; state preparation</subject><ispartof>Quantum science and technology, 2021-07, Vol.6 (3), p.35010</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</citedby><cites>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</cites><orcidid>0000-0002-8277-4434 ; 0000-0003-1082-0400 ; 0000-0003-1620-9207 ; 0000-0002-4156-2048 ; 0000-0002-3557-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/abfc94/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Kottmann, Jakob S</creatorcontrib><creatorcontrib>Krenn, Mario</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Alperin-Lea, Sumner</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><title>Quantum computer-aided design of quantum optics hardware</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</description><subject>photonics</subject><subject>quantum algorithms</subject><subject>quantum computing</subject><subject>quantum optics</subject><subject>quantum simulation</subject><subject>state preparation</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0tLw0AUhQdRsNTuXWblytg7z2SWUtQKBRF0PUzmoSkmk84kiP_ehBRxoav74JzD-RC6xHCDoSzXBHiZSy74WlfeSHaCFj-v01_7OVqltAcASjCWIBaofB502w9NZkLTDb2Lua6ts5l1qX5rs-Czw1EQur42KXvX0X7q6C7Qmdcfya2Oc4le7-9eNtt89_TwuLnd5YZy2ueCVbqwlMiKWGKkKEqimceCSF4WrOCCeoF1AYwKBsCBemacJ5Uznls93ksEc66JIaXovOpi3ej4pTCoCV5NdGqiUzP8aLmaLXXo1D4MsR0LqkPqlVBUAeUwWjvrR-H1H8J_c78BeFVnuQ</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Kottmann, Jakob S</creator><creator>Krenn, Mario</creator><creator>Kyaw, Thi Ha</creator><creator>Alperin-Lea, Sumner</creator><creator>Aspuru-Guzik, Alán</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1082-0400</orcidid><orcidid>https://orcid.org/0000-0003-1620-9207</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid></search><sort><creationdate>202107</creationdate><title>Quantum computer-aided design of quantum optics hardware</title><author>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>photonics</topic><topic>quantum algorithms</topic><topic>quantum computing</topic><topic>quantum optics</topic><topic>quantum simulation</topic><topic>state preparation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kottmann, Jakob S</creatorcontrib><creatorcontrib>Krenn, Mario</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Alperin-Lea, Sumner</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kottmann, Jakob S</au><au>Krenn, Mario</au><au>Kyaw, Thi Ha</au><au>Alperin-Lea, Sumner</au><au>Aspuru-Guzik, Alán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum computer-aided design of quantum optics hardware</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2021-07</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>35010</spage><pages>35010-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/abfc94</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1082-0400</orcidid><orcidid>https://orcid.org/0000-0003-1620-9207</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2021-07, Vol.6 (3), p.35010 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_abfc94 |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals |
subjects | photonics quantum algorithms quantum computing quantum optics quantum simulation state preparation |
title | Quantum computer-aided design of quantum optics hardware |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20computer-aided%20design%20of%20quantum%20optics%20hardware&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Kottmann,%20Jakob%20S&rft.date=2021-07&rft.volume=6&rft.issue=3&rft.spage=35010&rft.pages=35010-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/abfc94&rft_dat=%3Ciop_cross%3Eqstabfc94%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |