Quantum computer-aided design of quantum optics hardware

The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2021-07, Vol.6 (3), p.35010
Hauptverfasser: Kottmann, Jakob S, Krenn, Mario, Kyaw, Thi Ha, Alperin-Lea, Sumner, Aspuru-Guzik, Alán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35010
container_title Quantum science and technology
container_volume 6
creator Kottmann, Jakob S
Krenn, Mario
Kyaw, Thi Ha
Alperin-Lea, Sumner
Aspuru-Guzik, Alán
description The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.
doi_str_mv 10.1088/2058-9565/abfc94
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_abfc94</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstabfc94</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRsNTuXWblytg7z2SWUtQKBRF0PUzmoSkmk84kiP_ehBRxoav74JzD-RC6xHCDoSzXBHiZSy74WlfeSHaCFj-v01_7OVqltAcASjCWIBaofB502w9NZkLTDb2Lua6ts5l1qX5rs-Czw1EQur42KXvX0X7q6C7Qmdcfya2Oc4le7-9eNtt89_TwuLnd5YZy2ueCVbqwlMiKWGKkKEqimceCSF4WrOCCeoF1AYwKBsCBemacJ5Uznls93ksEc66JIaXovOpi3ej4pTCoCV5NdGqiUzP8aLmaLXXo1D4MsR0LqkPqlVBUAeUwWjvrR-H1H8J_c78BeFVnuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum computer-aided design of quantum optics hardware</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</creator><creatorcontrib>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</creatorcontrib><description>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/abfc94</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>photonics ; quantum algorithms ; quantum computing ; quantum optics ; quantum simulation ; state preparation</subject><ispartof>Quantum science and technology, 2021-07, Vol.6 (3), p.35010</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</citedby><cites>FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</cites><orcidid>0000-0002-8277-4434 ; 0000-0003-1082-0400 ; 0000-0003-1620-9207 ; 0000-0002-4156-2048 ; 0000-0002-3557-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/abfc94/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Kottmann, Jakob S</creatorcontrib><creatorcontrib>Krenn, Mario</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Alperin-Lea, Sumner</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><title>Quantum computer-aided design of quantum optics hardware</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</description><subject>photonics</subject><subject>quantum algorithms</subject><subject>quantum computing</subject><subject>quantum optics</subject><subject>quantum simulation</subject><subject>state preparation</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0tLw0AUhQdRsNTuXWblytg7z2SWUtQKBRF0PUzmoSkmk84kiP_ehBRxoav74JzD-RC6xHCDoSzXBHiZSy74WlfeSHaCFj-v01_7OVqltAcASjCWIBaofB502w9NZkLTDb2Lua6ts5l1qX5rs-Czw1EQur42KXvX0X7q6C7Qmdcfya2Oc4le7-9eNtt89_TwuLnd5YZy2ueCVbqwlMiKWGKkKEqimceCSF4WrOCCeoF1AYwKBsCBemacJ5Uznls93ksEc66JIaXovOpi3ej4pTCoCV5NdGqiUzP8aLmaLXXo1D4MsR0LqkPqlVBUAeUwWjvrR-H1H8J_c78BeFVnuQ</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Kottmann, Jakob S</creator><creator>Krenn, Mario</creator><creator>Kyaw, Thi Ha</creator><creator>Alperin-Lea, Sumner</creator><creator>Aspuru-Guzik, Alán</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1082-0400</orcidid><orcidid>https://orcid.org/0000-0003-1620-9207</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid></search><sort><creationdate>202107</creationdate><title>Quantum computer-aided design of quantum optics hardware</title><author>Kottmann, Jakob S ; Krenn, Mario ; Kyaw, Thi Ha ; Alperin-Lea, Sumner ; Aspuru-Guzik, Alán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-64ba7d329b2d2c96782a4f162958747563f61a70436400503f4cef2becf5da503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>photonics</topic><topic>quantum algorithms</topic><topic>quantum computing</topic><topic>quantum optics</topic><topic>quantum simulation</topic><topic>state preparation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kottmann, Jakob S</creatorcontrib><creatorcontrib>Krenn, Mario</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Alperin-Lea, Sumner</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alán</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kottmann, Jakob S</au><au>Krenn, Mario</au><au>Kyaw, Thi Ha</au><au>Alperin-Lea, Sumner</au><au>Aspuru-Guzik, Alán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum computer-aided design of quantum optics hardware</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2021-07</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>35010</spage><pages>35010-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/abfc94</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1082-0400</orcidid><orcidid>https://orcid.org/0000-0003-1620-9207</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2021-07, Vol.6 (3), p.35010
issn 2058-9565
2058-9565
language eng
recordid cdi_crossref_primary_10_1088_2058_9565_abfc94
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects photonics
quantum algorithms
quantum computing
quantum optics
quantum simulation
state preparation
title Quantum computer-aided design of quantum optics hardware
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A40%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20computer-aided%20design%20of%20quantum%20optics%20hardware&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Kottmann,%20Jakob%20S&rft.date=2021-07&rft.volume=6&rft.issue=3&rft.spage=35010&rft.pages=35010-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/abfc94&rft_dat=%3Ciop_cross%3Eqstabfc94%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true