Quantum computer-aided design of quantum optics hardware

The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2021-07, Vol.6 (3), p.35010
Hauptverfasser: Kottmann, Jakob S, Krenn, Mario, Kyaw, Thi Ha, Alperin-Lea, Sumner, Aspuru-Guzik, Alán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.
ISSN:2058-9565
2058-9565
DOI:10.1088/2058-9565/abfc94