The effect of potassium chloride on Aplysia Californica abdominal ganglion activity

Objective. Spontaneous activity in the abdominal ganglion of Aplysia can be used as a convenient bioelectricity source in tests of novel MRI-based functional imaging methods, such as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT). In these tests, it is necessary to find a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2018-04, Vol.4 (3), p.35033
Hauptverfasser: Fu, Fanrui, Chauhan, Munish, Sadleir, Rosalind
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. Spontaneous activity in the abdominal ganglion of Aplysia can be used as a convenient bioelectricity source in tests of novel MRI-based functional imaging methods, such as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT). In these tests, it is necessary to find a consistent treatment that modulates neural activity, so that these results can be compared with control data. Effects of MREIT imaging currents combined with treatment were also of interest. Approach. Potassium chloride (KCl) was employed as a rhythm modulator. In a series of experiments, effects of adding different volumes of KCl solution were tested and compared with experiments on control groups that had artificial sea water administered. In all cases, neuronal activity was measured with micro electrode arrays. Main results. It was possible to reversibly stop spontaneous activity in ganglia by increasing the extracellular potassium chloride concentration to 89 mM. There was no effect on experimental outcomes when current was administered to the sample chamber between recordings. Significance. KCl can be used as a reversible neural modulator for testing neural detection methods.
ISSN:2057-1976
2057-1976
DOI:10.1088/2057-1976/aab72e