Binder-free fabricated CuFeS 2 electrodes for supercapacitor applications

Copper iron sulfide (CFS) (chalcopyrite) thin-film electrodes have been synthesized for energy storage applications using the SILAR method without the use of a binder. The film’s structural as well as the morphological and electrochemical characteristics were studied to check the effect of varying d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2022-02, Vol.9 (2), p.25501
Hauptverfasser: Nsude, Hope Ebere, Obodo, Raphael M, Nsude, Kingsley U, Ikhioya, Lucky I, Asogwa, Paul U, Osuji, R U, Maaza, M, Ezema, Fabian I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper iron sulfide (CFS) (chalcopyrite) thin-film electrodes have been synthesized for energy storage applications using the SILAR method without the use of a binder. The film’s structural as well as the morphological and electrochemical characteristics were studied to check the effect of varying deposition cycles. The x-ray diffraction (XRD) test reveals a crystalline tetragonal CuFeS 2 (chalcopyrite) with a decreasing peak as the deposition cycle progresses. The micrographs of the films reveal a spherical but fleecy-like shape with particle aggregation at higher deposition cycles. The bandgap increased slightly towards higher cycles and is in the range of 1.15 to 1.22 eV. The CFS electrodes were evaluated in a three-electrode arrangement for supercapacitive application in a 2.0 M KOH electrolyte. The CFS electrodes function admirably. The greatest specific capacitance recorded was 537 F g −1 at 10 mV s −1 with capacitance retention of 93.5%. This is for CFS electrode deposited at 10 cycles; hence it has the greatest performance. This paper describes a simple, inexpensive, and repeatable method for fabricating electrodes for supercapacitors.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/ac4f13