Facile one-pot solvothermal approach to produce inorganic binary TiO 2 @NiTiO 3 and ternary Au-TiO 2 @NiTiO 3 yellow nano-pigment for environmental and energy use

Hybrid titanium dioxide (TiO 2 ) nickel titanate (NiTiO 3 ) perovskite nanomaterials (TiO 2 @NiTiO 3 ) and gold nanoparticles (AuNPs) supported on hybrid titania@nickel titanate (Au-TiO 2 @NiTiO 3 ) were successfully synthesized using a modified solvothermal wet chemical procedure. A pigment yellow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2021-04, Vol.8 (4), p.45016
Hauptverfasser: Ben Saber, Nesrine, Mezni, Amine, Alrooqi, Arwa, Altalhi, Tariq
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid titanium dioxide (TiO 2 ) nickel titanate (NiTiO 3 ) perovskite nanomaterials (TiO 2 @NiTiO 3 ) and gold nanoparticles (AuNPs) supported on hybrid titania@nickel titanate (Au-TiO 2 @NiTiO 3 ) were successfully synthesized using a modified solvothermal wet chemical procedure. A pigment yellow powders were obtained with high crystallinity as characterized by X-ray powder diffraction (XRD). TiO 2 exhibits the anatase phase despite the calcination at 600 °C and NiTiO 3 was found as expected to be in the ilmenite structure while gold retains the cubic structure. As will be shown below, the calcination treatments prove that the crystalline phase of the sample is very sensitive to the heat treatment. The obtained binary and ternary nanocomposites exhibit good optical response with interesting energy gap. The optical property of the nanocomposites was exploited for photocatalytic application against dyes molecules. The hybrid nanomaterial shows efficient photocatalytic activity compared to bare TiO 2 . Au/TiO 2 @NiTiO 3 shows superior photocatalytic efficiency contrasted to TiO 2 and to hybrid TiO 2 @NiTiO 3 that make it a promising photocatalyst for diverse applications counting photovoltaic devices and solar cells.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/abf874