Mechanical evaluation of polylactic acid (PLA) based composites reinforced with different calcium phosphates
In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morp...
Gespeichert in:
Veröffentlicht in: | Materials research express 2018-10, Vol.5 (10), p.105304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, the mechanical performance of polylactic acid (PLA) based composites reinforced with hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP) was investigated. The polymer was melt compounded with 1 and 2.5 wt% of particles by using an intensive mixer or a twin screw extruder. Morphological, thermal and rheological studies were performed to analyze the composites internal structure and filler-matrix interaction. The mechanical behavior was investigated through uniaxial tensile and quasi-static fracture tests. The different characterization techniques evidenced a better filler dispersion for composites obtained by extrusion independently of the filler used. A relatively weak filler-matrix interaction was revealed from morphological observations and rheological measurements. In addition, thermal analysis evidenced similar crystalline structure for all of the investigated materials. In general, uniaxial tensile parameters displayed almost constant values independently of the filler content or compounding method. Particularly, extruded composites with 2.5 wt% filler exhibited slightly increased ductility respect to neat PLA which was related to improved filler dispersion. The PLA matrix displayed load-displacement curves with ductile instability in quasi-static fracture tests. On the other hand, the composites with 2.5 wt% filler exhibited an increased stable crack growth followed by ductile instability. The fracture process was quantitatively described by means of critical stress intensity factor (KIQ) and strain energy release rate at propagation (GCP) parameters. The extruded composites with 2.5 wt% filler displayed improved propagation fracture toughness. Based on fractured surfaces analysis this enhanced behavior, not largely reported for untreated rigid fillers, was attributed to the effective activation of the toughening mechanisms of particle debonding and subsequent plastic void growth. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/aadb5b |