Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model
We propose a numerical model to describe laser ablation of a copper target by a femtosecond laser pulse at an oblique angle of incidence. The model is based on the two temperature model and improved to include laser fluence, laser spot size, and dynamic changes in reflectivity of the target. Numeric...
Gespeichert in:
Veröffentlicht in: | Materials research express 2018-01, Vol.5 (1), p.16518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a numerical model to describe laser ablation of a copper target by a femtosecond laser pulse at an oblique angle of incidence. The model is based on the two temperature model and improved to include laser fluence, laser spot size, and dynamic changes in reflectivity of the target. Numerical results show that the electron and lattice temperatures decrease with the angle of incidence. The dependency of the maximum temperature with angle of incidence follow a cosine power law. The threshold laser fluence, ablation depth and crater size depend on the polarization and angle of the incident laser beam. Our model is supported by the experimental results reported by other group working in femtosecond pulsed laser ablation. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/aaa4e8 |