Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors
Fe-doped NiO, a type of p-type gas sensor, has received wide attention for its low cost, environmentally friendliness and excellent gas-sensing performance. However, the operating temperature of Fe-doped NiO is too high (300 °C -500 °C). This study attempts to investigate the possibility of Fe-doped...
Gespeichert in:
Veröffentlicht in: | Materials research express 2017-04, Vol.4 (4), p.45015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe-doped NiO, a type of p-type gas sensor, has received wide attention for its low cost, environmentally friendliness and excellent gas-sensing performance. However, the operating temperature of Fe-doped NiO is too high (300 °C -500 °C). This study attempts to investigate the possibility of Fe-doped NiO working in relatively low temperature regions. A type of NiO nanofoam assembled by porous nanosheets was synthesized through a normal pressure microwave solvent thermal method by a domestic microwave oven, and Fe doping with different doping concentrations was investigated systematically. The gas-sensing performance was tested at a relatively low temperature (200 °C -280 °C). We found that the Fe-doped NiO still had a good gas-sensing performance, even at a relatively low temperature. In detail, the NiO nanofoams with 3 at% Fe-doping concentration were proven to have the best gas sensing characteristics (the response was 12-100 ppm ethanol at 280 °C), and an especially fast response and recovery (the response time and the recovery time was 1 s and 3.6 s, respectively). The study promoted the research regarding the gas sensing characteristics of Fe-doped NiO at a relatively low temperature. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/aa67d3 |