Recent progress in plasma-assisted synthesis and modification of 2D materials

Plasma represents an important technique for both the synthesis and modification of two-dimensional (2D) materials, owing to the unique plasma-material interactions which can enable effective energy transfer at the nanoscale. Non-equilibrium and non-thermal plasma techniques have been widely applied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2018-04, Vol.5 (3), p.32002
Hauptverfasser: Han, Zhao Jun, Murdock, Adrian T, Seo, Dong Han, Bendavid, Avi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma represents an important technique for both the synthesis and modification of two-dimensional (2D) materials, owing to the unique plasma-material interactions which can enable effective energy transfer at the nanoscale. Non-equilibrium and non-thermal plasma techniques have been widely applied on various 2D materials, including graphene, silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides such as MoS2 and WS2. Here, we review the recent progress in plasma-assisted synthesis and modification (e.g. functionalisation, doping and etching) of 2D materials and discuss the potential applications of this unique branch of 2D materials. Challenges and future research opportunities in the relevant research field are also discussed. The primary aim of this Review is to provide a better understanding of the plasma-assisted processes and to promote the utilization of 2D materials for advanced electronic, optoelectronic, sensing and energy storage applications.
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/aabb81