Structural prediction of two-dimensional materials under strain

We develop a procedure for the investigation of the phase diagram of materials under strain. This is based on a global structural prediction method where the volume is constrained to predefined values. Our method is more general than other available techniques, and it avoids at the same time numeric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2017-12, Vol.4 (4), p.45009
Hauptverfasser: Borlido, Pedro, Steigemann, Conrad, Lathiotakis, Nektarios N, Marques, Miguel A L, Botti, Silvana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a procedure for the investigation of the phase diagram of materials under strain. This is based on a global structural prediction method where the volume is constrained to predefined values. Our method is more general than other available techniques, and it avoids at the same time numerical instabilities. As a first example, we investigate the phase diagram of two-dimensional carbon as a function of the area per atom. As expected, we find that graphene is stable for a large range of biaxial strains. However, at large areas there appear novel carbon allotropes containing decagons and higher order polygons. These phases are thermodynamically stable for strains below the breaking point of graphene, indicating that they could be accessible experimentally.
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/aa85c6