On a problem due to Glasser on analytically tractable moments
Glasser, in 2011, introduced a remarkable integral identity of physical interest and suggested that the evaluation ∫ 0 1 / 2 k K 2 ( k ) d k = π G 4 provides the unique analytically tractable moment of K 2 on a sub-unit interval, where K denotes the complete elliptic integral of the first kind, and...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-03, Vol.57 (12), p.12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glasser, in 2011, introduced a remarkable integral identity of physical interest and suggested that the evaluation
∫
0
1
/
2
k
K
2
(
k
)
d
k
=
π
G
4
provides the unique analytically tractable moment of
K
2
on a sub-unit interval, where
K
denotes the complete elliptic integral of the first kind, and where
G
=
1
1
2
−
1
3
2
+
1
5
2
−
⋯
denotes Catalan’s constant. We show how a case of Clausen’s product identity related to Ramanujan’s series for
1
π
may be applied, via an integration argument derived from our past work in fractional analysis and Fourier–Legendre theory, to show how higher moments of
K
2
on the same sub-unit interval may be evaluated analytically in terms of the Γ-function. This and Glasser’s moment formula are motivated by how closely related moment formulas for powers of
K
arise in the study of Feynman diagrams. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ad2e3e |