Barycentric decomposition for quantum instruments
We present a barycentric decomposition for quantum instruments whose output space is finite-dimensional and input space is separable. As a special case, we obtain a barycentric decomposition for channels between such spaces and for normalized positive-operator-valued measures in separable Hilbert sp...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-03, Vol.57 (9), p.95302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a barycentric decomposition for quantum instruments whose output space is finite-dimensional and input space is separable. As a special case, we obtain a barycentric decomposition for channels between such spaces and for normalized positive-operator-valued measures in separable Hilbert spaces. This extends the known results by Ali and Chiribella
et al
on decompositions of quantum measurements, and formalizes the fact that every instrument between finite-dimensional Hilbert spaces can be represented using only finite-outcome instruments. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ad233c |