On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models
We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-12, Vol.55 (50), p.50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 50 |
container_start_page | 50 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 55 |
creator | Rodríguez, Miguel A Tempesta, Piergiulio |
description | We introduce a family of
n
-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable. |
doi_str_mv | 10.1088/1751-8121/acaada |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acaada</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacaada</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3jzl5cm2yyX7EmxS1QqGXeg6z-WhTdrNrsov037tLpScRBmaYeZ85PAjdU_JESVkuaJHRpKQpXYAC0HCBZufV5Xmm7BrdxHggJONEpDO023i8d7u9CYl2jfHRtR5qHIfOBOd7swtQ1QbHY-xNE58xYG--sYXG1UfcWqxqiNGpEQGv8dcAvh8avJrufesdeNy02tTxFl1ZqKO5--1z9Pn2ul2ukvXm_WP5sk4Uo7RPrEp5rkRuraoUY6oiqRap0mVRMa6JAWBVYYtKqIxzykRRmpRSnnMtckGJYHNETn9VaGMMxsouuAbCUVIiJ1FyMiEnK_IkakQeT4hrO3lohzAKiP_FH_6Ig8wymZGx1ltCZact-wEt3Hn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rodríguez, Miguel A ; Tempesta, Piergiulio</creator><creatorcontrib>Rodríguez, Miguel A ; Tempesta, Piergiulio</creatorcontrib><description>We introduce a family of
n
-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acaada</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Hamiltonian systems ; Liouville integrability ; superintegrable models</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-12, Vol.55 (50), p.50</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</citedby><cites>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</cites><orcidid>0000-0002-5186-2378 ; 0000-0002-6983-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acaada/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Rodríguez, Miguel A</creatorcontrib><creatorcontrib>Tempesta, Piergiulio</creatorcontrib><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We introduce a family of
n
-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</description><subject>Hamiltonian systems</subject><subject>Liouville integrability</subject><subject>superintegrable models</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3jzl5cm2yyX7EmxS1QqGXeg6z-WhTdrNrsov037tLpScRBmaYeZ85PAjdU_JESVkuaJHRpKQpXYAC0HCBZufV5Xmm7BrdxHggJONEpDO023i8d7u9CYl2jfHRtR5qHIfOBOd7swtQ1QbHY-xNE58xYG--sYXG1UfcWqxqiNGpEQGv8dcAvh8avJrufesdeNy02tTxFl1ZqKO5--1z9Pn2ul2ukvXm_WP5sk4Uo7RPrEp5rkRuraoUY6oiqRap0mVRMa6JAWBVYYtKqIxzykRRmpRSnnMtckGJYHNETn9VaGMMxsouuAbCUVIiJ1FyMiEnK_IkakQeT4hrO3lohzAKiP_FH_6Ig8wymZGx1ltCZact-wEt3Hn1</recordid><startdate>20221216</startdate><enddate>20221216</enddate><creator>Rodríguez, Miguel A</creator><creator>Tempesta, Piergiulio</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5186-2378</orcidid><orcidid>https://orcid.org/0000-0002-6983-0710</orcidid></search><sort><creationdate>20221216</creationdate><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><author>Rodríguez, Miguel A ; Tempesta, Piergiulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hamiltonian systems</topic><topic>Liouville integrability</topic><topic>superintegrable models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Miguel A</creatorcontrib><creatorcontrib>Tempesta, Piergiulio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Miguel A</au><au>Tempesta, Piergiulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-12-16</date><risdate>2022</risdate><volume>55</volume><issue>50</issue><spage>50</spage><pages>50-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We introduce a family of
n
-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acaada</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5186-2378</orcidid><orcidid>https://orcid.org/0000-0002-6983-0710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2022-12, Vol.55 (50), p.50 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_acaada |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Hamiltonian systems Liouville integrability superintegrable models |
title | On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20higher-dimensional%20superintegrable%20systems:%20a%20new%20family%20of%20classical%20and%20quantum%20Hamiltonian%20models&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Rodr%C3%ADguez,%20Miguel%20A&rft.date=2022-12-16&rft.volume=55&rft.issue=50&rft.spage=50&rft.pages=50-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acaada&rft_dat=%3Ciop_cross%3Eaacaada%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |