On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models

We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-12, Vol.55 (50), p.50
Hauptverfasser: Rodríguez, Miguel A, Tempesta, Piergiulio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 50
container_start_page 50
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Rodríguez, Miguel A
Tempesta, Piergiulio
description We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.
doi_str_mv 10.1088/1751-8121/acaada
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_acaada</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacaada</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3jzl5cm2yyX7EmxS1QqGXeg6z-WhTdrNrsov037tLpScRBmaYeZ85PAjdU_JESVkuaJHRpKQpXYAC0HCBZufV5Xmm7BrdxHggJONEpDO023i8d7u9CYl2jfHRtR5qHIfOBOd7swtQ1QbHY-xNE58xYG--sYXG1UfcWqxqiNGpEQGv8dcAvh8avJrufesdeNy02tTxFl1ZqKO5--1z9Pn2ul2ukvXm_WP5sk4Uo7RPrEp5rkRuraoUY6oiqRap0mVRMa6JAWBVYYtKqIxzykRRmpRSnnMtckGJYHNETn9VaGMMxsouuAbCUVIiJ1FyMiEnK_IkakQeT4hrO3lohzAKiP_FH_6Ig8wymZGx1ltCZact-wEt3Hn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rodríguez, Miguel A ; Tempesta, Piergiulio</creator><creatorcontrib>Rodríguez, Miguel A ; Tempesta, Piergiulio</creatorcontrib><description>We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acaada</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Hamiltonian systems ; Liouville integrability ; superintegrable models</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-12, Vol.55 (50), p.50</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</citedby><cites>FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</cites><orcidid>0000-0002-5186-2378 ; 0000-0002-6983-0710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acaada/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Rodríguez, Miguel A</creatorcontrib><creatorcontrib>Tempesta, Piergiulio</creatorcontrib><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</description><subject>Hamiltonian systems</subject><subject>Liouville integrability</subject><subject>superintegrable models</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt3jzl5cm2yyX7EmxS1QqGXeg6z-WhTdrNrsov037tLpScRBmaYeZ85PAjdU_JESVkuaJHRpKQpXYAC0HCBZufV5Xmm7BrdxHggJONEpDO023i8d7u9CYl2jfHRtR5qHIfOBOd7swtQ1QbHY-xNE58xYG--sYXG1UfcWqxqiNGpEQGv8dcAvh8avJrufesdeNy02tTxFl1ZqKO5--1z9Pn2ul2ukvXm_WP5sk4Uo7RPrEp5rkRuraoUY6oiqRap0mVRMa6JAWBVYYtKqIxzykRRmpRSnnMtckGJYHNETn9VaGMMxsouuAbCUVIiJ1FyMiEnK_IkakQeT4hrO3lohzAKiP_FH_6Ig8wymZGx1ltCZact-wEt3Hn1</recordid><startdate>20221216</startdate><enddate>20221216</enddate><creator>Rodríguez, Miguel A</creator><creator>Tempesta, Piergiulio</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5186-2378</orcidid><orcidid>https://orcid.org/0000-0002-6983-0710</orcidid></search><sort><creationdate>20221216</creationdate><title>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</title><author>Rodríguez, Miguel A ; Tempesta, Piergiulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-fc246c96ffcbc33cb02d92cd87b34d0eaa3b7f7b9c54413978e211464d9691093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hamiltonian systems</topic><topic>Liouville integrability</topic><topic>superintegrable models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez, Miguel A</creatorcontrib><creatorcontrib>Tempesta, Piergiulio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez, Miguel A</au><au>Tempesta, Piergiulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-12-16</date><risdate>2022</risdate><volume>55</volume><issue>50</issue><spage>50</spage><pages>50-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acaada</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5186-2378</orcidid><orcidid>https://orcid.org/0000-0002-6983-0710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-12, Vol.55 (50), p.50
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_acaada
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Hamiltonian systems
Liouville integrability
superintegrable models
title On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20higher-dimensional%20superintegrable%20systems:%20a%20new%20family%20of%20classical%20and%20quantum%20Hamiltonian%20models&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Rodr%C3%ADguez,%20Miguel%20A&rft.date=2022-12-16&rft.volume=55&rft.issue=50&rft.spage=50&rft.pages=50-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acaada&rft_dat=%3Ciop_cross%3Eaacaada%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true