On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models
We introduce a family of n -dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-12, Vol.55 (50), p.50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a family of
n
-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay–Turbiner–Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/acaada |