Scaling asymptotics of spectral Wigner functions

We prove that smooth Wigner–Weyl spectral sums at an energy level E exhibit Airy scaling asymptotics across the classical energy surface Σ E . This was proved earlier by the authors for the isotropic harmonic oscillator and the proof is extended in this article to all quantum Hamiltonians − ℏ 2 Δ +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (41), p.414003
Hauptverfasser: Hanin, Boris, Zelditch, Steve
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that smooth Wigner–Weyl spectral sums at an energy level E exhibit Airy scaling asymptotics across the classical energy surface Σ E . This was proved earlier by the authors for the isotropic harmonic oscillator and the proof is extended in this article to all quantum Hamiltonians − ℏ 2 Δ + V where V is a confining potential with at most quadratic growth at infinity. The main tools are the Herman–Kluk initial value parametrix for the propagator and the Chester–Friedman–Ursell normal form for complex phases with a one-dimensional cubic degeneracy. This gives a rigorous account of Airy scaling asymptotics of spectral Wigner distributions of Berry, Ozorio de Almeida and other physicists.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ac91b4