Non-local effects on travelling waves arising in a moving-boundary reaction–diffusion model

We examine travelling wave solutions of the partial differential equation u t = u xx + u (1 − u ∗ ϕ ) on a moving domain x ⩽ L ( t ), where u ∗ ϕ is the spatial convolution of the population density with a kernel ϕ ( y ). We provide asymptotic approximations of the resulting travelling waves in vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (40), p.405701
Hauptverfasser: Fadai, Nabil T, Billingham, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine travelling wave solutions of the partial differential equation u t = u xx + u (1 − u ∗ ϕ ) on a moving domain x ⩽ L ( t ), where u ∗ ϕ is the spatial convolution of the population density with a kernel ϕ ( y ). We provide asymptotic approximations of the resulting travelling waves in various asymptotic limits of the wavespeed, the non-local interaction strength, and the moving boundary condition. Crucially, we find that when the moving boundary has a weak interactive strength with the population density flux, there can be two different travelling wave solutions that move at the same wavespeed.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ac8ef5