Non-local effects on travelling waves arising in a moving-boundary reaction–diffusion model
We examine travelling wave solutions of the partial differential equation u t = u xx + u (1 − u ∗ ϕ ) on a moving domain x ⩽ L ( t ), where u ∗ ϕ is the spatial convolution of the population density with a kernel ϕ ( y ). We provide asymptotic approximations of the resulting travelling waves in vari...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (40), p.405701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine travelling wave solutions of the partial differential equation
u
t
=
u
xx
+
u
(1 −
u
∗
ϕ
) on a moving domain
x
⩽
L
(
t
), where
u
∗
ϕ
is the spatial convolution of the population density with a kernel
ϕ
(
y
). We provide asymptotic approximations of the resulting travelling waves in various asymptotic limits of the wavespeed, the non-local interaction strength, and the moving boundary condition. Crucially, we find that when the moving boundary has a weak interactive strength with the population density flux, there can be two different travelling wave solutions that move at the same wavespeed. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ac8ef5 |