The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards

The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201
Hauptverfasser: Teston, F, Azevedo, A L, Sales, M R, Zanetti, F M, da Luz, M G E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 175201
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Teston, F
Azevedo, A L
Sales, M R
Zanetti, F M
da Luz, M G E
description The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function G 0 of the embedding domain V of C . However, in many instances—like for C modeling a billiard—the specific V is not really fundamental and thus one has a certain freedom to choose distinct domains and so G 0 ’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.
doi_str_mv 10.1088/1751-8121/ac5b90
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac5b90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac5b90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMKepQ9AqJ2fHXaogoJUiU32lr-Nq9Su7ATojmtwPU6Co6LuWL2ZpzejeQPALUb3GFG6wKTCGcU5XnBZiQadgdlpdX7CuLgEVzFuEapK1OQz4NtOQ9PrTytsb4cDtA7Kzvto3QYqGwfr5ABXQWv38_UdoRkTt94l5AMcklj40SkeDvCD9z3c6aHz6iGRd70ZrdIRcqdgMu8tDypegwvD-6hv_uYctM9P7fIlW7-tXpeP60zmFA1ZWVCsS96IquaSpI8Ip6U0wuTS1FQgQmTd4EZIklNV1QUvOSJFmRcNNbVExRygo60MPsagDdsHu0spGUZs6otNhbCpHHbsK0nujhLr92zrx-BSvv_PfwEulW8e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</creator><creatorcontrib>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</creatorcontrib><description>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function G 0 of the embedding domain V of C . However, in many instances—like for C modeling a billiard—the specific V is not really fundamental and thus one has a certain freedom to choose distinct domains and so G 0 ’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac5b90</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>boundary wall method ; Green’s function ; leaking borders ; quantum billiards ; wave equation</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</citedby><cites>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</cites><orcidid>0000-0003-3865-2621 ; 0000-0002-1121-6371 ; 0000-0001-9405-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac5b90/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Teston, F</creatorcontrib><creatorcontrib>Azevedo, A L</creatorcontrib><creatorcontrib>Sales, M R</creatorcontrib><creatorcontrib>Zanetti, F M</creatorcontrib><creatorcontrib>da Luz, M G E</creatorcontrib><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function G 0 of the embedding domain V of C . However, in many instances—like for C modeling a billiard—the specific V is not really fundamental and thus one has a certain freedom to choose distinct domains and so G 0 ’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</description><subject>boundary wall method</subject><subject>Green’s function</subject><subject>leaking borders</subject><subject>quantum billiards</subject><subject>wave equation</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAUtBBIlMKepQ9AqJ2fHXaogoJUiU32lr-Nq9Su7ATojmtwPU6Co6LuWL2ZpzejeQPALUb3GFG6wKTCGcU5XnBZiQadgdlpdX7CuLgEVzFuEapK1OQz4NtOQ9PrTytsb4cDtA7Kzvto3QYqGwfr5ABXQWv38_UdoRkTt94l5AMcklj40SkeDvCD9z3c6aHz6iGRd70ZrdIRcqdgMu8tDypegwvD-6hv_uYctM9P7fIlW7-tXpeP60zmFA1ZWVCsS96IquaSpI8Ip6U0wuTS1FQgQmTd4EZIklNV1QUvOSJFmRcNNbVExRygo60MPsagDdsHu0spGUZs6otNhbCpHHbsK0nujhLr92zrx-BSvv_PfwEulW8e</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Teston, F</creator><creator>Azevedo, A L</creator><creator>Sales, M R</creator><creator>Zanetti, F M</creator><creator>da Luz, M G E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3865-2621</orcidid><orcidid>https://orcid.org/0000-0002-1121-6371</orcidid><orcidid>https://orcid.org/0000-0001-9405-658X</orcidid></search><sort><creationdate>20220429</creationdate><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><author>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>boundary wall method</topic><topic>Green’s function</topic><topic>leaking borders</topic><topic>quantum billiards</topic><topic>wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teston, F</creatorcontrib><creatorcontrib>Azevedo, A L</creatorcontrib><creatorcontrib>Sales, M R</creatorcontrib><creatorcontrib>Zanetti, F M</creatorcontrib><creatorcontrib>da Luz, M G E</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teston, F</au><au>Azevedo, A L</au><au>Sales, M R</au><au>Zanetti, F M</au><au>da Luz, M G E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>55</volume><issue>17</issue><spage>175201</spage><pages>175201-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function G 0 of the embedding domain V of C . However, in many instances—like for C modeling a billiard—the specific V is not really fundamental and thus one has a certain freedom to choose distinct domains and so G 0 ’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac5b90</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3865-2621</orcidid><orcidid>https://orcid.org/0000-0002-1121-6371</orcidid><orcidid>https://orcid.org/0000-0001-9405-658X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_ac5b90
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects boundary wall method
Green’s function
leaking borders
quantum billiards
wave equation
title The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20flexibility%20in%20choosing%20distinct%20Green%E2%80%99s%20functions%20for%20the%20boundary%20wall%20method:%20waveguides%20and%20billiards&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Teston,%20F&rft.date=2022-04-29&rft.volume=55&rft.issue=17&rft.spage=175201&rft.pages=175201-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac5b90&rft_dat=%3Ciop_cross%3Eaac5b90%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true