The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards
The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders C , at which the wave function must satisfy spec...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 175201 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 55 |
creator | Teston, F Azevedo, A L Sales, M R Zanetti, F M da Luz, M G E |
description | The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders
C
, at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function
G
0
of the embedding domain
V
of
C
. However, in many instances—like for
C
modeling a billiard—the specific
V
is not really fundamental and thus one has a certain freedom to choose distinct domains and so
G
0
’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides. |
doi_str_mv | 10.1088/1751-8121/ac5b90 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_ac5b90</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac5b90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMKepQ9AqJ2fHXaogoJUiU32lr-Nq9Su7ATojmtwPU6Co6LuWL2ZpzejeQPALUb3GFG6wKTCGcU5XnBZiQadgdlpdX7CuLgEVzFuEapK1OQz4NtOQ9PrTytsb4cDtA7Kzvto3QYqGwfr5ABXQWv38_UdoRkTt94l5AMcklj40SkeDvCD9z3c6aHz6iGRd70ZrdIRcqdgMu8tDypegwvD-6hv_uYctM9P7fIlW7-tXpeP60zmFA1ZWVCsS96IquaSpI8Ip6U0wuTS1FQgQmTd4EZIklNV1QUvOSJFmRcNNbVExRygo60MPsagDdsHu0spGUZs6otNhbCpHHbsK0nujhLr92zrx-BSvv_PfwEulW8e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</creator><creatorcontrib>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</creatorcontrib><description>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders
C
, at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function
G
0
of the embedding domain
V
of
C
. However, in many instances—like for
C
modeling a billiard—the specific
V
is not really fundamental and thus one has a certain freedom to choose distinct domains and so
G
0
’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac5b90</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>boundary wall method ; Green’s function ; leaking borders ; quantum billiards ; wave equation</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</citedby><cites>FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</cites><orcidid>0000-0003-3865-2621 ; 0000-0002-1121-6371 ; 0000-0001-9405-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac5b90/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Teston, F</creatorcontrib><creatorcontrib>Azevedo, A L</creatorcontrib><creatorcontrib>Sales, M R</creatorcontrib><creatorcontrib>Zanetti, F M</creatorcontrib><creatorcontrib>da Luz, M G E</creatorcontrib><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders
C
, at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function
G
0
of the embedding domain
V
of
C
. However, in many instances—like for
C
modeling a billiard—the specific
V
is not really fundamental and thus one has a certain freedom to choose distinct domains and so
G
0
’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</description><subject>boundary wall method</subject><subject>Green’s function</subject><subject>leaking borders</subject><subject>quantum billiards</subject><subject>wave equation</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAUtBBIlMKepQ9AqJ2fHXaogoJUiU32lr-Nq9Su7ATojmtwPU6Co6LuWL2ZpzejeQPALUb3GFG6wKTCGcU5XnBZiQadgdlpdX7CuLgEVzFuEapK1OQz4NtOQ9PrTytsb4cDtA7Kzvto3QYqGwfr5ABXQWv38_UdoRkTt94l5AMcklj40SkeDvCD9z3c6aHz6iGRd70ZrdIRcqdgMu8tDypegwvD-6hv_uYctM9P7fIlW7-tXpeP60zmFA1ZWVCsS96IquaSpI8Ip6U0wuTS1FQgQmTd4EZIklNV1QUvOSJFmRcNNbVExRygo60MPsagDdsHu0spGUZs6otNhbCpHHbsK0nujhLr92zrx-BSvv_PfwEulW8e</recordid><startdate>20220429</startdate><enddate>20220429</enddate><creator>Teston, F</creator><creator>Azevedo, A L</creator><creator>Sales, M R</creator><creator>Zanetti, F M</creator><creator>da Luz, M G E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3865-2621</orcidid><orcidid>https://orcid.org/0000-0002-1121-6371</orcidid><orcidid>https://orcid.org/0000-0001-9405-658X</orcidid></search><sort><creationdate>20220429</creationdate><title>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</title><author>Teston, F ; Azevedo, A L ; Sales, M R ; Zanetti, F M ; da Luz, M G E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4381e4a9b56ac7ac57a84cfbf2cf68b077c6919bc728d563a4a07342398f6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>boundary wall method</topic><topic>Green’s function</topic><topic>leaking borders</topic><topic>quantum billiards</topic><topic>wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teston, F</creatorcontrib><creatorcontrib>Azevedo, A L</creatorcontrib><creatorcontrib>Sales, M R</creatorcontrib><creatorcontrib>Zanetti, F M</creatorcontrib><creatorcontrib>da Luz, M G E</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teston, F</au><au>Azevedo, A L</au><au>Sales, M R</au><au>Zanetti, F M</au><au>da Luz, M G E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-04-29</date><risdate>2022</risdate><volume>55</volume><issue>17</issue><spage>175201</spage><pages>175201-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The boundary wall method (BWM) is a general purpose protocol to treat boundary value problems for wave equations, specially Helmholtz’s (the case addressed here). Similarly to most approaches, the BWM may be computationally demanding for large borders
C
, at which the wave function must satisfy specified boundary conditions. Also, despite the fact the BWM is an exact procedure, usually it is not amenable to closed form solutions. The BWM relies on the Green’s function
G
0
of the embedding domain
V
of
C
. However, in many instances—like for
C
modeling a billiard—the specific
V
is not really fundamental and thus one has a certain freedom to choose distinct domains and so
G
0
’s. Here we consider this characteristic of the BWM and show how to obtain some analytical results and solve numerically semi-infinite waveguides by exploring proper Green’s functions. As examples, we discuss rectangular, triangular and trapezoidal structures with both Dirichlet and leaking boundaries as well as scattering states within semi-infinite rectangular waveguides.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac5b90</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3865-2621</orcidid><orcidid>https://orcid.org/0000-0002-1121-6371</orcidid><orcidid>https://orcid.org/0000-0001-9405-658X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2022-04, Vol.55 (17), p.175201 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1751_8121_ac5b90 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | boundary wall method Green’s function leaking borders quantum billiards wave equation |
title | The flexibility in choosing distinct Green’s functions for the boundary wall method: waveguides and billiards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20flexibility%20in%20choosing%20distinct%20Green%E2%80%99s%20functions%20for%20the%20boundary%20wall%20method:%20waveguides%20and%20billiards&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Teston,%20F&rft.date=2022-04-29&rft.volume=55&rft.issue=17&rft.spage=175201&rft.pages=175201-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac5b90&rft_dat=%3Ciop_cross%3Eaac5b90%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |