Low-dissipation model of three-terminal refrigerator: performance bounds and comparative analyses

In the present paper, a general non-combined model of three-terminal refrigerator beyond specific heat transfer mechanisms is established based on the low-dissipation assumption. The relation between the optimized cooling power and the corresponding coefficient of performance (COP) is analytically d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-02, Vol.55 (6), p.65001
Hauptverfasser: Li, Zhexu, Gonzalez-Ayala, Julian, Yang, Hanxin, Guo, Juncheng, Calvo Hernández, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, a general non-combined model of three-terminal refrigerator beyond specific heat transfer mechanisms is established based on the low-dissipation assumption. The relation between the optimized cooling power and the corresponding coefficient of performance (COP) is analytically derived, according to which the COP at maximum cooling power (CMP) can be further determined. At two dissipation asymmetry limits, upper and lower bounds of CMP are obtained and found to be in good agreement with experimental and simulated results. Additionally, comparison of the obtained bounds with previous combined model is presented. In particular it is found that the upper bounds are the same, whereas the lower bounds are quite different. This feature indicates that the claimed universal equivalence for the combined and non-combined models under endoreversible assumption is invalid within the frame of low-dissipation assumption. Then, the equivalence between various finite-time thermodynamic models needs to be reevaluated regarding multi-terminal systems. Moreover, the correlation between the combined and non-combined models is further revealed by the derivation of the equivalent condition according to which the identical upper bounds and distinct lower bounds are theoretically shown. Finally, the proposed non-combined model is proved to be the appropriate model for describing various types of thermally driven refrigerator. This work may provide some instructive information for the further establishments and performance analyses of multi-terminal low-dissipation models.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ac47b0