Bose–Hubbard models with on-site and nearest-neighbor interactions: exactly solvable case
We study the discrete spectrum of the two-particle Schrödinger operator H ̂ μ λ ( K ) , K ∈ T 2 , associated to the Bose–Hubbard Hamiltonian H ̂ μ λ of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice Z 2 with interaction magnitudes μ ∈ R...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-06, Vol.54 (24), p.245201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the discrete spectrum of the two-particle Schrödinger operator
H
̂
μ
λ
(
K
)
,
K
∈
T
2
, associated to the Bose–Hubbard Hamiltonian
H
̂
μ
λ
of a system of two identical bosons interacting on site and nearest-neighbor sites in the two dimensional lattice
Z
2
with interaction magnitudes
μ
∈
R
and
λ
∈
R
, respectively. We completely describe the spectrum of
H
̂
μ
λ
(
0
)
and establish the optimal lower bound for the number of eigenvalues of
H
̂
μ
λ
(
K
)
outside its essential spectrum for all values of
K
∈
T
2
. Namely, we partition the (
μ
,
λ
)-plane such that in each connected component of the partition the number of bound states of
H
̂
μ
λ
(
K
)
below or above its essential spectrum cannot be less than the corresponding number of bound states of
H
̂
μ
λ
(
0
)
below or above its essential spectrum. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/abfcf4 |