Asymptotics of multicomponent linked polygons
We investigate the asymptotic behaviour of multi-component links where the edges can be distributed among the components in all possible ways. Specifically we consider a link of k polygons on the simple cubic lattice. We prove two results about the exponential behaviour and use a Monte Carlo method...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-06, Vol.54 (23), p.235002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the asymptotic behaviour of multi-component links where the edges can be distributed among the components in all possible ways. Specifically we consider a link of
k
polygons on the simple cubic lattice. We prove two results about the exponential behaviour and use a Monte Carlo method to investigate how the value of the critical exponent depends on link type. One ring grows at the expense of the others while the remaining components act as one or more roots on the growing component, each root contributing 1 to the value of the critical exponent. Which component grows depends on which maximizes the entropy of the system |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/abf872 |