Asymptotics of multicomponent linked polygons

We investigate the asymptotic behaviour of multi-component links where the edges can be distributed among the components in all possible ways. Specifically we consider a link of k polygons on the simple cubic lattice. We prove two results about the exponential behaviour and use a Monte Carlo method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-06, Vol.54 (23), p.235002
Hauptverfasser: Bonato, A, Orlandini, E, Whittington, S G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the asymptotic behaviour of multi-component links where the edges can be distributed among the components in all possible ways. Specifically we consider a link of k polygons on the simple cubic lattice. We prove two results about the exponential behaviour and use a Monte Carlo method to investigate how the value of the critical exponent depends on link type. One ring grows at the expense of the others while the remaining components act as one or more roots on the growing component, each root contributing 1 to the value of the critical exponent. Which component grows depends on which maximizes the entropy of the system
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/abf872