A fluctuation-corrected functional of convex Poisson-Boltzmann theory

Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-09, Vol.51 (38), p.385001
Hauptverfasser: Blossey, R, Maggs, A C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 38
container_start_page 385001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 51
creator Blossey, R
Maggs, A C
description Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic potential , or sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been recast, via a Legendre transform, as a mean-field theory involving the dielectric displacement field . In this paper we consider the path integral formulation of this dual theory. Exploiting the transformation between φ and , we formulate a dual sine-Gordon field theory in terms of the displacement field and provide a strategy for precise numerical computations of free energies beyond the leading order.
doi_str_mv 10.1088/1751-8121/aad352
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1751_8121_aad352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02344717v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-de492f6172a3d3ef6f4525178ba1aedc5a3dd4259ee0fed1bca25288e1d242c3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3j3sSBNdm8tFNj7VUKxT00HtI80G3bDcl2S3Wv94sK3tSGJjh8XsP5iF0D_gZsBATKDjkAghMlDKUkws0GqTL4QZ6jW5i3GPMGZ6REVrOM1e1umlVU_o61z4EqxtrMtfWupNUlXmXaV-f7Ff26csYE_biq-b7oOo6a3bWh_MtunKqivbud4_R5nW5Wazy9cfb-2K-zjUVRZMby2bETaEgihpq3dQxTjgUYqtAWaN5kg0jfGYtdtbAVivCiRAWDGFE0zF67GN3qpLHUB5UOEuvSrmar2WnYUIZK6A4QWJxz-rgYwzWDQbAsmtMdpXIrh7ZN5YsD72l9Ee5921Iz0epZMKoSMMxBnk0LoFPf4D_5v4AalB5ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fluctuation-corrected functional of convex Poisson-Boltzmann theory</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Blossey, R ; Maggs, A C</creator><creatorcontrib>Blossey, R ; Maggs, A C</creatorcontrib><description>Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic potential , or sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been recast, via a Legendre transform, as a mean-field theory involving the dielectric displacement field . In this paper we consider the path integral formulation of this dual theory. Exploiting the transformation between φ and , we formulate a dual sine-Gordon field theory in terms of the displacement field and provide a strategy for precise numerical computations of free energies beyond the leading order.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aad352</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Condensed Matter ; duality ; Physics ; Poisson-Boltzmann theory ; Soft Condensed Matter ; soft matter electrostatics</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2018-09, Vol.51 (38), p.385001</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-de492f6172a3d3ef6f4525178ba1aedc5a3dd4259ee0fed1bca25288e1d242c3</citedby><cites>FETCH-LOGICAL-c387t-de492f6172a3d3ef6f4525178ba1aedc5a3dd4259ee0fed1bca25288e1d242c3</cites><orcidid>0000-0002-9071-5063 ; 0000-0002-4823-7037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aad352/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02344717$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blossey, R</creatorcontrib><creatorcontrib>Maggs, A C</creatorcontrib><title>A fluctuation-corrected functional of convex Poisson-Boltzmann theory</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic potential , or sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been recast, via a Legendre transform, as a mean-field theory involving the dielectric displacement field . In this paper we consider the path integral formulation of this dual theory. Exploiting the transformation between φ and , we formulate a dual sine-Gordon field theory in terms of the displacement field and provide a strategy for precise numerical computations of free energies beyond the leading order.</description><subject>Condensed Matter</subject><subject>duality</subject><subject>Physics</subject><subject>Poisson-Boltzmann theory</subject><subject>Soft Condensed Matter</subject><subject>soft matter electrostatics</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3j3sSBNdm8tFNj7VUKxT00HtI80G3bDcl2S3Wv94sK3tSGJjh8XsP5iF0D_gZsBATKDjkAghMlDKUkws0GqTL4QZ6jW5i3GPMGZ6REVrOM1e1umlVU_o61z4EqxtrMtfWupNUlXmXaV-f7Ff26csYE_biq-b7oOo6a3bWh_MtunKqivbud4_R5nW5Wazy9cfb-2K-zjUVRZMby2bETaEgihpq3dQxTjgUYqtAWaN5kg0jfGYtdtbAVivCiRAWDGFE0zF67GN3qpLHUB5UOEuvSrmar2WnYUIZK6A4QWJxz-rgYwzWDQbAsmtMdpXIrh7ZN5YsD72l9Ee5921Iz0epZMKoSMMxBnk0LoFPf4D_5v4AalB5ug</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Blossey, R</creator><creator>Maggs, A C</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9071-5063</orcidid><orcidid>https://orcid.org/0000-0002-4823-7037</orcidid></search><sort><creationdate>20180921</creationdate><title>A fluctuation-corrected functional of convex Poisson-Boltzmann theory</title><author>Blossey, R ; Maggs, A C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-de492f6172a3d3ef6f4525178ba1aedc5a3dd4259ee0fed1bca25288e1d242c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>duality</topic><topic>Physics</topic><topic>Poisson-Boltzmann theory</topic><topic>Soft Condensed Matter</topic><topic>soft matter electrostatics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blossey, R</creatorcontrib><creatorcontrib>Maggs, A C</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blossey, R</au><au>Maggs, A C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fluctuation-corrected functional of convex Poisson-Boltzmann theory</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2018-09-21</date><risdate>2018</risdate><volume>51</volume><issue>38</issue><spage>385001</spage><pages>385001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Poisson-Boltzmann theory allows to study soft matter and biophysical systems involving point-like charges of low valencies. The inclusion of fluctuation corrections beyond the mean-field approach typically requires the application of loop expansions around a mean-field solution for the electrostatic potential , or sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been recast, via a Legendre transform, as a mean-field theory involving the dielectric displacement field . In this paper we consider the path integral formulation of this dual theory. Exploiting the transformation between φ and , we formulate a dual sine-Gordon field theory in terms of the displacement field and provide a strategy for precise numerical computations of free energies beyond the leading order.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aad352</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9071-5063</orcidid><orcidid>https://orcid.org/0000-0002-4823-7037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2018-09, Vol.51 (38), p.385001
issn 1751-8113
1751-8121
language eng
recordid cdi_crossref_primary_10_1088_1751_8121_aad352
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed Matter
duality
Physics
Poisson-Boltzmann theory
Soft Condensed Matter
soft matter electrostatics
title A fluctuation-corrected functional of convex Poisson-Boltzmann theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fluctuation-corrected%20functional%20of%20convex%20Poisson-Boltzmann%20theory&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Blossey,%20R&rft.date=2018-09-21&rft.volume=51&rft.issue=38&rft.spage=385001&rft.pages=385001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aad352&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02344717v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true